
0) Technical Document 1944
December 1990

NUser's Guide to an
Event-Activation Record

OApproach to Simulation
Modeling in Ada

H. Mumm
R. Ollerton

DTIQ 7__S-ELECTE
FEB 2 111

Approved for public release; distribution is unlimited.

91 2 19 241

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN H. R. TALKINGTON, Acting
Commander Technical Director

ADMINISTRATIVE INFORMATION

This report was completed under funding from the Naval Ocean Systems Center for the
Shared Adaptive Internetworking Project (SAINT) as part of the Communication Block Program.

The need for an affordable and understandable discrete-event simulation system became
apparent during earlier work. The current work demonstrated that Ada was not only adequate, but
was in many ways superior to currently available commercial simulation languages.

Released by Under authority of
M. B. Vineberg, Head K. R. Casey, Head
System Design and Architecture Battleforce and Theater
Branch Communications Division

CONTENTS

1.0 INTRODUCTION .. 1

2.0 INSTALLATION .. 2
2.1 Creating the EARS Program Library 2
2.2 Creating the GEN Program Library 3

3.0 BUILDING AND RUNNING AN EARS SIMULATION 4
3.1 Writing a Procedure to Instantiate Package EvGen 4
3.2 Compiling and Executing a Procedure That Instantiates EvGen 7
3.3 Gas Station Example 8

3.3.1 Statement of Problem 8
3.3.2 Determining the Events 8
3.3.3 Writing the Procedure to Instantih, Package EvGen 9
3.3.4 Compiling and Executing the Instantiation Procedure 9
3.3.5 Code That Is Generated Automatically 9
3.3.6 New Program Units Added by Hand 16
3.3.7 Compilation Order 21

4.0 USING PACKAGE EV ... 22
4.1 EV Package Specification 22

4.1.1 EVENTREC .. 27
4.1.2 Event Processing Subprograms 28
4.1.3 Package Simulation 28
4.1.4 General Debugging Subprograms 28
4.1.5 Debugger Subprograms 30

5.0 LINKED LISTS -............................. 32
5.1 Lnk. .. 32

5.1.1 Lnk Specification 32
5.1.2 Lnk Example .. 36

5.2 LrikAi ... 40
5.3 LnkTi. .. 40
5.4 Link ... 40

5.4.1 Link Specification 40
5.4.2 Link Example 44

5.5 LinkA i .. 49
5.6 LinkTi .. 49

6.0 STATISTICAL PACKAGES 50
6.1 Package Rand Specification 50
6.2 Package Random_Distribution Specification 50
6.3 Package Random Specification 51
6.4 Package Rand and Random_Distribution Example 52
6.5 Package Ti Specification 53
6.6 Package Tf Specification 54
6.7 Package Ai Specification 56
6.8 Package Af Specification 58

iii

6.9 Package Ti, Ti', Ai, Af Example 60

7.0 HASH TABLES 65
7.1 Package Hsh .. 65
7.2 Package Hash.. 67

8.0 BIBLIOGRAPHY.. 70

iv

1.0 INTRODUCTION

This document explains how to install and use the Event-Activation Record Approach to
Simulation Modeling in Ada (EARS) simulation libraries, Version 1.0, that have been developed
by the Naval Ocean Systems Center (NOSC), Code 854. EARS, Version 1.0, resides on a NOSC
VAX 8600 named "Otter" and executes using the VAX Ada, Version 2.0, compiler. EARS is a
discrete-event simulation system that uses an event-activation record approach and has capabilities
similar to those provided by SIMSCRIFT. All simulations that can be modeled in SIMSCRIPT
can be modeled using EARS.

From a set of user-defined event types, EARS automatically generates much of the source
code for many Ada packages and subprograms that are needed for simulation development. This
allows a user to quickly start writing an EARS sinmlation. The user tailors the simulation to his
or her application by adding Ada source code to the generated program units and by writing
additional ones.

EARS packages contain subprograms for scheduling events, manipulating queues,
calculating statistics, writing reports, debugging, and performing other necessary simulation
functions.

This document includes an example of actual EARS simulation as well as examples of
how to use EARS packages and subprograms.

Major differences between SIMSCRIPT and EARS include the fohllwing:

1. EARS does not implement processes; rather, eveats are used for synchronization.

2. Many constructs built by the SIMSCRIPT compiler nmst be constructed in EARS by using Ada
statements. Advantages to using the Ada language rather than SIMSCRIPT include the following:

a. Ada supports software engineering features (e.g., strong typing, visibility, and generics).
b. Ada is the DoD standard programming language.
c. Ada symbolic debuggers greatly reduce debugging times.
d. Ada compilers are widely available (for many computers from many vendors).

This document assumes that the EARS user is already familiar with discrete-event
simulation and knows how to use SIMSCRIPT. The EARS user must be an experienced Ada
programmer.

Aooession for

NTIS GRA&I

VHPrED DTIQ0 TAB 0

JuaL atio-

B y -
1tst ttpei.

2.0 INSTALLATION

2.1 CREATING THE EARS PROGRAM LIBRARY

EARS software is installed on a VAX Ada environment by creating an Ada library and
then compiling the EARS files into the library. This may be done by executing the commnand file
listed below. The EARS program library name, given below, was arbiarmily chosen.

$got verify I Ebos coinanda to monitor.
$ace create lib [320036 .EV] ! Creates ada program library

I 320036.EV].
$ace set lib [320036.EV] I Set to ada, program library

I [320036.EVI.
sada/list/noopt SIN_.ADA I Compiles file sin. ada, compiled code

I goes into SIN_.LIS file, and Ada
I identifiers no*t optimized away.

$ada/list/noopt REZLATIONAL_.ADA
*ad/list/noopt RELhTIONAL .ADA
$ad/list/noopt FLT_.ADA
$ada/list/noopt D2_.ADA
$ada/list/noopt DATE _.ADA
$ada/list/noopt STAT_.ADA
$ada/list/noopt Al __ADA
$ada/list/noopt AZ _.ADA
$ada/list/noopt TN _.ADA
$ada/liat/noopt TI .ADA
$ada/list/noopt GET N .ADA
$ada/list/noopt BIT-.ADA
$ada/liat/noopt BIT .ADA
$ada/list/noopt SEX_.ADA
$ad/list/noopt HEX.ADA
$ada/liat/noopt IIXk)_.ADA
$ada/liat/noopt I IAX.ADA
*ada/list/noopt I KIN _.ADA,
$ada/liat/noopt I .NINADA
*ada/list/noopt LINK .ADA
Sada/list/noopt LINK ADA
$ada/list/noopt LINK _AZ .ADA
$ada/list/noopt LINK AZ.ADA
$ada/liat/noopt LINKTI_.ADA
$ada/liat/noopt LINK TI.ADA
$ada/list/noopt LAUK .ADA
*ada/liat/noopt LMK.ADA
$ada/liat/noopt LWE_AZ_.ADA
$ada/liat/noopt LUKAZ ADA
$ada/liat/noopt HASH-.ADA
$ada/list/noopt HASH .ADA
$ada/list/noopt NAT _LN.ada
$ada/list/noopt USE_.ADA
$ada/list/noopt USE .ADA
$ada/list/noopt PROTO_..ADA
$ada/list/noopt PROTO.ADA
$ada/liat/noopt ZV _.ADA
Oada/listnoopt EVQ.ADA
$ada/4~pt/noopt SG.ADA
$ada/lfst/noopt SQ .ADA
*ada/list/noopt DUD .ADA
$ada/list/noopt DUD .ADA
$ada/list/noopt 3ff HRANDON ADA
$ada/list/noopt RAN1D_.ADA
*ada/list/noopt REAL PARAN_.ADA

continued

2

*adallistlnoopt X12 PARAN .AD&
$ad/liot/noopt MAUMDKDSUZUTIOU .ADA
$adallistnoopt RhWM DSUINUM.ADA
$adalliatlnoopt RhUDON.ADIL
*ada/iatluoopt RhW.ADA
*ada/list/noopt SXK.ADA
$ada/list/noopt EV.ADA
$adallist/noopt Al ADA
*ada/list/noopt AZ .ADA
*adallist/noopt DATE .ADA
$adallistlnoopt GT N ADA
$adallistlnoopt XN!_PA1UIN.ADA
$ada/list/noopt MEAL PARAK.ADA
$ada/list/noopt RlAZ .ADA
$adallist/noopt 82AT .ADA
$adalliatlnoopt 2 .ADIL
$adallistlnoopt TI .ADA
$ad/listlnoopt IL! .ADA
$sot noverify I Turn of f echo to monitor.

2.2 CREATING THE GEN PROGRAM LIBRARY

The program library GEN, which contains the automatic source code generation software
for both the EARS and the Simulated Network Architecture Protocol Layer (SNARPL) systems, is
installed on a VAX Ada environment by executing the command file listed below. The program
library name, GEN, was arbitrarily chosen.

$".t verify I Echom coands to monitor.
$ace create lib [320036 .GEN] I Create program library

I (320036.GZN].
$aoa not lib 1320036 .GE=] I Set to library just created.
$adallist/noopt LC _.ADA
*ada/list/noopt 11C_.ADA
$ada/list/noopt UlqADA
$ada/list/noopt =AME ADA
$adallistlnoopt NM! .1AD1
$adalliat/noopt ADA NMU ADA
$ada/liat/noopt ADA NAD.ADA
$adallist/noopt VHSACS_ ADA
*ada/listlnoopt D2_.ADA
$ad/listnoopt DATE _ADA
$adallistlnoopt DATEADA
$adallistlnoopt EVGN-.ADA
$adallistlnoopt EV _GUNADA
*ada/list/noopt GZi SNARLGEM_.ADA
*adallistlnoopt GEM SWMRL GIN .ADA
*ada/iat/noopt BNAMPL_ =.ADA
$ada/list/noopt 1MT.ADA
$ada/iat/noopt XC.ADA
*ada/list/noopt VllSACE .ADA
$ada/list/noopt UC .ADA
*ada/listlnoopt NAIU.ADA
$sot noverify I Turn off echo to monitor.

3

3.0 BUILDING AND RUNNING AN EARS SIMULATION

This chapter desribes in detail how to write an EARS simulation. A complete simulation
example is given. Included is an explanation of (1) how to generate the packages and
subprograms automatically, (2) the code that is added by hand, and (3) the required inputs and
outputs.

3.1 WRITING A PROCEDURE TO INSTANTIATE PACKAGE EVGEN

The initial step of an EARS simulation is to instantiate the package Ev~jGen, which is in
the GEN library. The Ev_(3en package specification is listed below.

with Text_10, AdaName, Name, Vas hAs, Date;
use Text 10;

generic

sin Nalme
-STRING;
-- -- - - - - - - - - - - - - - -- - - - - - - - - - - - - -
-IThe first part of all file and compilation unit names
-Iwill be "SIKNAME".

type EVENTS is

-- Namesa of the different types of events initially in the

s- imlation.
-- -- - - - - - - - - - - - - - -- - - - - - - - - - - - - -

with procedure Simple -File Name
Unit :STRING;
Specification : OOLEAN;
Fn :out Ada Name.Name String;
Spec Erzt STRING :- sAcs.Spec Exzt;
BodyExt STRING -Vm Acm.BodyjExt;
Format :Name.String Format :- Name.DefaultCase)

is Vs Acs .Siinple File Name;
-- -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -
-IForm a file name for a unit specification or body.
-- -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

with procedure VileDeader
File :FileType;
UserName :STRING;
Keg -STRING) is Date.Header;
_ __-- - - - -- - - -- - - - -- - - - - - - -- - - - - - - -

-jIf USER NWM is not a null string, this routine in called
-jfor eachi file created.
-- -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

procedure Xv Gen
UoerNm STRIU3: ""

SpecL Ext STRING :-VW& Aca. SpecExt;
BodyExt STRING :-Vms ha.Bodyjxt;
Format :Name. String Format :- Name Default C ase);

The use of Ev _Gen will first be discussed in general terms. EvGen is a generic package
that may be instantiated with four parameters. The first two are required, while the last two can
accept defaults. The first parameter, SimLName, is a string that becomes the first part of the file

4

names and program unit names for the source code that is generated automatically. The second
parameter, EVENTS, is an enumerated type that defines event types required for a specific
simulation. Note, that the source code for a stop simulation event type will be generated
automatically. It need not be specified in the enumerated type.

If Ev_(en is not instantiated with the two user-provided procedures, Simple_FileName
and File-ieader, then the default procedures are used. The default procedure SimpleFileName
creates VAX/VMS files and should be used when running EARS on VAX/VMS. The default
procedure FileHeader creates a file header.

An example of a default file header (supplied by package Date) that is created during
code generation is given below. The user name, date, time, and a brief program unit description
appear in the header.

-- I ---
-- I Alan, NIR 19-MAR-1990 14:56.48
-- >>#kg body for Simulation Job Definitions
-- I --

Two examples of procedures that instantiate Ev_Gen will now be described. The first,
which is shown below, uses the default Simple_File_Name and File_Header procedures. This
simulation defines four events: Message_.Generation, StartSlot, Transmit, and Receive (in addition
to the stop simulation event). The first two characters of the file names and program unit names
will start with the character string "MV."

with xv Ga;
procedure Gen Sourocem is

type Event-Type is (MessageGeneration, Start-Slot,
Transmit, Receive);

prooedure IV is new XvGen (Sin Mam ->-KV",

bVITS -> Event Type) ;

V(User NUm -> "Alan");
end rGenSourceMV;

For the second example, the user first writes the header procedure, SAICH, which is
given below.

-- SACxN will add standard headers to all files.

with TZXT 10;
use TEXT 10;

procedure MICE._ (r file-type;

continued

5

USER_ NAM : string;
MSG string) is

begin

putlins(f -.-- -
put line(f,"-- x V ");
putline Cf. :-
put line(f," ");
put lin e (f, --
put_line(f,--- simulation: " & USER MAN);
putline(f,- module: " & mrG);
put-linef ---
put line(f," ") ;
put linef ---
putcline(f,--));
put line(f, ---
put line(f,"-- simulation: " & USER AMAE);
putline (f, - module: " a MSG);
putline (f, ------------------------------
put line(f," ") ;
putline(f "--
put line(f,"-- -);
put line(f,"-- Author: Z. Beck");
put line(f,"-- Date: 3/19/90");
put-line(f, "-- Organization: SAIC, Engineering Systems Group, San Diego, CA");
put line(f,"-- ");

putline(f,"-- Description: User supplied.");
put linef, "-- ");
put line(f,"-- NONE");
put-line(f,"-- ");
putline (f, "-- ");
put line (f, "-- Assumptions:");
put line(f,-- ");
putline (f, -- NONE")
put,_lin(f,"--- -) ;
put line(f,"-- -);

put line(f, --
put line(f," ");
put line(f, --)
put line (f,"-- Revision History:");
put line (f,"-- Date Author, Org. Revision sumiary and validation
performed");
put line f" ----- ---
putline (f, "---

put line(f,--- -);
put line(f, ---
put lineC," "(f ;
end SAICH;

The second example of a procedure that instantiated EvGen is given below. In this
example procedure, GenLH instantiates EVGen so that (1) file and program unit names created
will begin with string "LH," (2) there will be code generated for 15 events, and (3) the procedure
SAICH will be used to create the file header.

6

-- Evada file generator for OF Long Haul modal.

with NV Gen, adaPams, ameo, vmssacs, date, SAICH2;
procedure GNLB is
type EVENT Tfm is

(DSS_- RV, DSSXOUT, DS-COUUTZR, DS-RV,
DS,_DNZT, GENDDCST, GEN_1M, UZSE!, START-SLOT,
TIMEOUT, TU 1, SOUND, TUNE 2, I&T CALL,
LQA2CNG, RZ!_ACK, TUNE_3, STARTALE);

procedure EV is now EV Gen (sin NAM => "Lu",
EVEiTS -Z VENTTYPE,
File Header &M ~aC W);

begin
EV("U' Long Haul");

end 1ZHLU;

The header that is generated in example two is shown below.

-- package spe LU

-- simulation: BF Long Haul
-- module: Pkg Spec for Simulation Job Definitions

-- Author: E. Deck
-- Date: 3/21/90
-- Organisation: SAIC, Engineering Systems Group, San Diego, CA

-- Description: List* constants connecting event types (jobs)
-- a.i'I numbers.
-- A few widely used data types are listed.

-- Assumptions:

-- Revision History:
-Date Author, Org. Revision suary and validation performed

3.2 COMPILING AND EXECUTrING A PROCEDURE THAT INSTANTIATES EvGen

The commands listed below, which are in a command file, are used to compile, link, and

7

execute the procedure GENSOURCEMV. (Refer to the first example above.)

! Set program library to [320032.EV.GRN].
Saca net lib [320032.EV.GZ]
1 Copile instantiation procedure.
Sada/liet Gen Source MV.ada
$ace link Gen Source MV ! Gen Source MV in the name of

- procedure that instantiates
package Vj_Gen.

$run GenSource NV

Upon execution, the following files are generated:

package pec MV
package body MV
procedure spec MVEp_ StopSimulation
procedure body MVEpStopSimulation
procedure apec MV NP HESSAGE_GENERATION
procedure body MV ERHEMSSAGE GENERATION
procedure apec MVEPSTART_SLOT
procedure body MVEpSTART SLOT
procedure apec MVEPTRANSMIT
procedure body MVE _TRANSMIT
procedure apec MV ER RECEIVE
procedure body MVP _RECEIVE
procedure spec MV EpSTOPSERVICE
procedure body MVNp_STOP SERVICE
procedure ipec MV DISPATCHER
procedure body MV_DISPATCHER

3.3 GAS STATION EXAMPLE

The use of EARS can best be illustrated by describing in detail a simulation example. The
example given is the classic gas station model. This example requires the use of EARS packages,
including EV, RANDOM, statistical packages, and linked list packages. The example illustrates
the use of the packages and their subprograms. A more detailed explanation of these packages is
found in subsequent chapters.

3.3.1 Statement of Problem

The problem is to develop a gas station simulation where the customers arrive randomly.
Their interarrival rate is exponentially distributed. The customers queue up to be serviced by
attendants, receive service, and then leave. The service times are randomly selected from an
exponential distribution. The purpose of the simulation is to examine the effect of adding
attendants and changing the mean interarrival time and the mean service time for simulations of
varying duration.

3.3.2 Determining the Events

Before instantiating Ev_Gen, the user must determine the EARS events required for the
simulation to be developed. These events are defined in the enumerated type Event_Type in the

8

package that instantiates EVGen. An EARS event is an occurrence that takes place at some point
in time. An EARS event may be scheduled to occur after a delta time or at a specific time.

For the gas station problem, only three things are scheduled: the arrival of a customer, the
time required for service, and the end of the simulation. The names chosen for the event types are
CustomerArrival, Stop-Service, and Stop-Simulation. Remember, the Stop_Simulation procedure
is generated automatically without defining it in EventType.

33.3 Writing the Procedure to Instantiate Package EvGen

This procedure is given below. EVGen is only instantiated with the two required
parameters, Sim_Name and Events. The string name for files and program units begins with
"Hans." Only a Customer_Arrival and Stop-Service event are defined.

with ZY Gen;
procedaoe Gen Source GS is
type Zvent-Type in (Cuatomer_ Arrival, StopService);
procedure KV is now Zv Gon (Sin Nam ->"GS",

-Z iTS -> Event Type);
begin
XV(Uaer Name => "Bana");

end Gen Source GS;

3.3.4 Compiling and Executing the Instantiation Procedure

A command file that contains the code required to compile, link, and execute the above
procedure using VAX/VMS is given below.

I Set program library to [320032.rV.GZN].
acsa net lib [320032.ZV.GZN]
I Create sublibrary [320032.WV.GN.SUBLIT] .

I Set to aublibrary
$ad/list Gen Souroe GS.ada I Conpile instantiation procedure
Sacs link Gen-Source GS I Gen Source GS is the name of

I procedure that inatantistea
! package XV Gen.

$run Gen Source GS
I Upon sucoessfUl execution of Gen.Source GS the

*aca delete sublib [320032.Z'.GZN.sublib]

3.3.5 Code That Is Generated Automatically

The ten program units listed in this section are generated at the completion of the above
commands. An explanation of each program unit will follow its source code. Each line of code
that is generated automatically will, for the sake of clarity, have "-- A" added to the right-hand
side.

9

package spec Cs
package body CS
procedure spe CS_._STOP_SMLATION
procedure body GSNp.STOPSIULATION
procedure speo CS_p CUSTOIER ARIVAL
procedure body GS NpCSTOR ARRIVAL
procedure spec GS_.STOP _SRVICR
procedure body GS_pSTOP SNRVICI
procedure spec GSDISPATCHER
procedure body GSDISPATCHER

3.3.5.1. Automatically Generated Package Specifications

The only package specification that is generated automatically is Gs. This procedure is
given below. In this example, only the comments and two lines of Ada code are added by hand.
The first line added by hand "withs in" package GsDispatcher. The second instantiates the
generic package Ev.Simulation with Ev.MaxPriority => 1 and Ev.Dispatcher => GS.Dispatcher.
This means that for the gas station simulation all the events have the same scheduling priority
and the dispatcher used will be GS.Dispatcher, which is generated automatically.

The next line of code assigns a value of 1 to Group. Group is a number that is associated
with a specific simulation. Simulations that may potentially be integrated are assigned consecutive
group numbers.

In the next three lines of code, the parameters Stop-Simulation, CustomerArrival, and
Stop-Service are defined as constants 0, 1, and 2, respectively. EV.Sim_Job is a unique integer
that is associated with each type of event. It will be used in the dispatcher body.

Function Nu returns an event, given an input parameter of type Ev.Sim_Job. The event
has two discriminants. Function Nu sets the first to the value of Job and the second to the value
of Group. Section 4 will discuss type Ev.Event in more detail.

-------------------------------------- -A
-- I Hans, MONDAY 12-MRR-1990 09:16.14 -- A
-->>Pkg Spec for Simulation Job Definitions -- A
-- I -- A

-- A
with Ev; -- A
with 'sDispatcher;
packaje Cs is -- A

-- A
-- NV.Simulation is called with the following two parameters:
-- 1 represents the number of priorities in the simulation
-- CSDispatoher is the name of the dispatcher procedure that is generated
-- automatically by NV Gen
package Gs Simulation is

new Nv.Simulation (Max Priority -> 1, Dispatcher -> GsDispatcher);

Group -- A
constant Xv.SimGroup :- 1; -- A

-- Numbers assigned below are values of discriminant zV.Event Rec, which
-- are used in dispatcher.

continued

10

Stop imulation -A
:constant Zv.SinJob :-0; -- A

* custoeur Arrival -- A
:constant Kv.Siz Job :-1; -- A

Stop ervice -- A
:constant Xv.Sin Job : ; A

function Nu -- A
Job : Zv.Sin Job) -A
return Xv .Zvent; -A

-ICreate& Events for this Zvent Group -- A
and o; -A

3.3.5.2. Automatically Generated Package Bodies

The only package body generated automatically is Gs. It contains the function body Nu,
which was described above. The package body Gs appears below.

-- -- A
-- I Bans, MNDAY 19-IU.R-1990 14:56.48 -- A
-- >)Ihkg body for Simulation Job Definition& A
-- I -- -- A
package body as in -A

function Nu -A
(Job : Xv.Siz Job)-A
return Nv.lvent is -- A

Zvnt -- A
: v.Zvent; -- A

begin---uNo-A
ivut :- new Zv.gvent Rec(Group. Job); -- A
return Zvnt; -- A

end Mu; -- A
end Gs; -A

3.3.5.3. Automatically Generated Procedure Specifications

The gas station example has four procedure specifications that are generated automatically.
Three procedures created are associated with event types. The fourth is the dispatcher. The event
procedures created are GS-.Ep-Customer -Arrival, GS-Ep...top.. ervice, and GS..Ep..Stop-
Simulation. Each of the three event procedures has one input, Var, that is of type EV.Event.
Procedure GSEp..CustornerArrival is given below.

with Iv; -- A
procedure GSUp_ Customer-Arrival (Vax: Xv. Event); -- A

-- -- A
-IHans, MMAY 12-MUR-1990 09:16.16 -- A

-- >>Event Procedure for Event Type 0 -- A
-- -- A

Procedure GS-Ep-Stop-Service is given below.

with IV; -- A
procedure GSNp top._Service (3: Zv.Zvent); -- A

-- -- A
B- ans, MONUDAY 12-MAR-1990 09:16.17 -- A

-- >)Ivent Procedure for avent Type 1 -- A
------------ I-A----------------

Procedure GS-Ep-top-Simulation is given below.

with IV; -- A
procedure GS_Np_Stop;imulation (Ewit : Nv.Kvnt); -- A

--- -- A
B- ans, MONDAY 12-MAR-1990 09:16.15 -- A

-- > Zvent Procedure to Stop the Simulation at a Specific time -- A
--- -- A

The fourth specification, for procedure GS.Dispatcher, also has one input, Evnt, that is of
type EV.Event. This procedure is given below.

-- -- A
B- ans, MONDAY 19-HAR-1990 14:02.07 -- A

-- > Ivont Procedure Dispatcher A
-- -- A

SA

with Ev; -- A
procedure GS-Dispatchor (Nvnt: Xv.Zvent); -- A

3.3.5.4. Automatically Generated Procedure Bodies

The bodies for the four procedures, GS-Ep-.CUSTOMERARRIVAL,
GS-EpSTOP_-SERVICE, GS...EpStop-imulation, and GSDispatcher, are also generated
automatically.

First, the event procedures will be discussed. At the top of each procedure the string,
Name, is defined to contain the name of the procedure. Name is printed in the exception handler
when an error occurs.

Each procedure body will now be discussed individually.

1. Procedure Gs..Ep...usnmerArrival

The procedure GS...Ep...CustomerArrival is given below. Variables
Customer...Serviceffine, Next_Arrival, and Gs-Xp.MeanServiceTime are of type SimReal.
SimReal is the EARS definition of type "float," with 9 decimal digits of accuracy. Following the
"begin" statement function Random.Exponential is called with two inputs, the random number
stream selected, which is 1, and the mean service time, which is the value of

12

GS_-Xp.MeanService_Tune. A streamn is a source of random numbers. There is a random number
seed associated with each stream. G&-Xpvlean-.ServiceTime is a user input to the package
specification Gs..Xp. Procedure RandontExponential returns a random number from an exponential
distribution whose mean is the value of GSXp.Mean_Service_Time.

The procedure Tf.Assign is used to maintain tallied floating point statistics on
ServiceTime. TF.Assign assigns the value of CustomnerServiceTimne to the statistical variable
GSXp.St.

Next, there is a "for loop" in which each attendant is checked to see if he is busy. When
he is not busy, he is set to busy. The start work time for the attendant is set equal to the value
of the simulation clock, Ev.Clock. Initially it is zero. The procedure Ev.DeltaSchedule has two
inputs: CustomerServiceTime and an attendant event. When all the attendants are busy, then the
customer is put into the customer queue, G&-Xp.CustomerQueue. This is accomplished by the
call to RIAiAppend. RIAi is a package that is an instantiation of linked list package Lnk-Ai
with type Sim.Real. Lnk..Ai appends the member CustomerServiceTimne to the end-of-link list
Gs_-Xp.Customer -Queue. Package LAi is an EARS linked list package that automatically
maintains time-dependent statistics on queue length. In this case, it is the GsXp.Customer-.Queue.

Next, the exponentially distributed random variable NextArrival tim is selected by
calling procedure Random.Exponential with the first stream and a mean of
GsXp.Mean-jntrarrivaLTime. Finally, Ev.DeltaSchedule is called to schedule the next arrival.
in' next arrival is scheduled to occur at time EV.Clock plus NextArrival tirm.

with Sim; -A
with RlAi, Random, GsXp, Go lv, Tf;
procedure caS p CutmrArval -- A

Var : viZvent) is -A

constant STRING :- "GS-RpCUTO 1RIVIL"; -- A

CustomerServiceTim
:Sia.1mal;

Next Arrival
: im.asal;

begin -- 1aU utmrArvl- A
-- I DetermneCutme Srvc time.

CustoimerServiceTim :-Rando.xponential (1, Gs _Xp.Nean-Service Tim) ;
Tf.Assign (Gsp. St, Customer Service-Time);
-- I Try to find an idle Attendant
for This in Ga Xp.Attendants loop

if not Gs Xp. Attendant (This) Busy then
OsXp.Attendsnt (This).Duay :- TUM;
OsXp. Attendant (This) .Start Work :- lv.Clook;

F- or Z.Delta Schedule if no event and priority are passed
-as parawaters then default is current event and priority.

ZY.Delta Schedule(
Timi w5 Customer Service Ties,
Zvnt -> OaZv.#tcjperoe (This))

exit;
elsif This - Os -X.Attendants'Last then
-- I All Attendants are busy, so customer goes in queue

Rl AL . Append (Os _Xp. Custcm*er Queue, customererviceTim);

continued

13

end If;
and loop;
Next Arrival :- Random.Zzpnntial (1, GsXp.Nean nterarrivlTime);
Xv.Delta Schedule (Time -> Next Arrival, Emit -> Var);

-- Next Tine is deleted when do simulation
-raise Sim.NotZImlmented; -- A

exception -- GOA p jCustaorArrival -- A
when others -> -A

Zv.ZrrZ O("Crashed in "£Name); -- A
raise; -A

end Gs p jCustomer Arrival; -A

2. Procedure Gsjp"top.Service

The procedure GS..Ep-Stop..Service is shown below. The first statement following "begin"
updates the time worked for an attendant. The value of E.Var(O), by convention, is used as an
identification number. In this example, it represents the attendant IID. (For communications
network modeling it might represents Node IDI)

The next statement updates the number of customers served by the attendant. Then the
function RIAiNI checks to see if the number of items in the customer queue is greater than
zero. When it is, then the StartWork variable for the attendant is set equal to current simulation
time, Ev.Clock. Procedure RIAi.Pop pulls Customer_ServiceTime off the front of the
Customer -Queue. Next, the procedure Ev.DeltaSchedule schedules the time for service
completion. When the number of items in the customer queue is zero, the attendant is set to not
busy.

with Iv; -A
with GaNp, RIAi;
with Sim; -A
use Sim;
procedkures Ga Npstop Service -A

N z N v.vent) is -A
Name -A

constant STEZUG : "G.SjpS TOP_ SERICI"; -- A

Customer Service-Tim
:Sim.ieal;

Found
: OOLNZN;

begin -- Os p_ StopService -A
-IUpdate Stats for Attendant

-- .Var(O) contains the ID of attendant
GsXp .Attendant (3.Var (0)) . TimWorked

:- Os _Xp.Attendant (Z.Var(0)) .Time Worked
+ Zv.Clock - GOs_Xp.Attendant(Z.Va7r()).Start-Work;

Gs Xp.Attendant (I.Var (0)).Customers Served
:- Os _NpAttendant (3.Var (0)) .CustomesServed + 1;

-IChoe Customer Queue
-- Vnation NL returns the number of items in the list

if Rl Ai.Wl(GaXp.Customergueue) > 0 then
-IStart Customer Service.

continued

14

a&-xp.Att~ndant (Z Var(0)) .Start Work :- Rv. Cloak;
RI Al .pop(gs Xp.Cutomer Queue, CutmrServiceyim. Found);
--T Sahile Sebrvice Comiletion
iv. Dlt _Scaeule (Tim -> Custoser-Service-Time, Zvnt Z>);

alse
-- I go customers, so not busy

GsXp.Attendant (N.Var (0)). may :- False;
end if;

-- Next line is removed for simlation
-raise siu.xot _Zeplemented; -- A

eepion -A
when other* -A

zv.zrr-zO("oreahed in "aname); -- A
raise; -A

end G" p SBtopjService; -A

3. Procedure GS-Ep-S.topSimulation

This procedure, shown below, sets the boolean value Ev. Simulating to "False," which
causes the simulation to end.

procedure ras NpStop Simlatioc - A
N znt : v.ivent) is -A

:constant STRING -"ga_p tcpimlation"; -- A
b-gin -- as Np top Spimulation -- A

Nv.8imulating :- False; -A
exception -- Gs _Np Stqp yinalation -- A

when others -> -A
Nv.NrrZO10("Crashed in " G ame);- A
raise; -A

end s Np Stop_ SImulation; -A

4. Procedure GS-Dispatcher

This procedure, given below, is called by procedure Ev.Start with an input parameter that
is an EV.Event. GS_Dispatcher looks at the value of the discriminant EvntJob and calls the
appropriate event procedure GS...Ep...Customer...Arrival, GS-.Ep-..Stop-.Service, or
GS...EpS.top~iuin Anecpini aised and an error message is printed for invalid values
of Evnt.Job.

with on; -A
use as; -A
with 04S NpCutmr Arrival; -A
with OS NZppStop service; -A
with OS Np Stop limulat ion; -A
procedure GS Dispatcher (lint: Xv.Event) is -- A

No such-JOE exception; -A

continued

15

begin -A
ae Evat. job is -A

when CustomrA rival -> 08 Np jCustomsr-Arrival (Ivnt);- A
when Stop-Servk. -> OS NpStop Service (Evnt); -- A
when Stop_#3mlation w> G8ZpStpimlatioc (Evt); -- A
when others -> raise NoSuch Job; -- A

and case; -A
exception -A

when No-Such Job ->-A
zv.ErV_10 -A
("No Such-Job as"&EV. Sin Job'image (Evnt. Job)a" in -- A

CS-Dispatcher"); -A
raise; -A

when others --- A
raise; -A

end CSDispatcher; -A

3.3.6 New Program Units Added by Hand

1. Package Gs)CXp Specification and Body

The package specification Gs...Xp, given below, reads in simuxlation input data at
"elaboration" and defines an array of records containing attendant informnation.

Function TnLParam is called to get the values for Numb--r_-OfAttendants,
Meanrlntcrarrivaljrime, MeanServiceTime, and Run_-Time. Customer_-Queue is a LakAi
linked list whose item is of type Sim.Real. St is a statistical variable for tallied fixed point
statistics. Attendant is an array of records containing attendant informnation. The procedure Report
is called from procedure GsStation to print out results of the simulation.

with Sim, Int-Param, Real-Pars., 1.1_AL, Tf;

package GaVp is

NumberOfAttendants
constant POSITIVE
:- Int-Para("ATTENDANTS:");

subtype ATTENDANTS is
POSITIV range 1 .. NumberOfAttendants;

Mean Interarrival Time
constant Sim.ieal :-RealPaam"HEAN INTERNIVAL TIM (m):");

Mean Service Time
: onstant7Sin.Real :-Real Para("MAN SERVICE TIME (mn):");

RunTime
Sim.Real
:- Sia."*" (60.0, Real-Param("RUIE TIM (bra):"));

Customer Queue

continued

16

:31 A.List;
St

:Tf.Variable;

type AHUDAWT_ MC is
record
Busy :DOOLKAN;
Start Work 2Bl.a~e;
Tim Worked 11iaReal :- 0.0;
Customnrs Served :NATUL 0;

end record;

Attendant
array (ATTENDANTS)
of AT IUAMTNEC;

procedure Report;

end GasXp;

T'he package body, given below, defines and initializes the CustomerQueue. The
procedure Report prints out the simulation input parameters and the results. The results include the
simulation time and customer queue statistics, which are printed from procedure AiReport and
service time statistics, which are printed from procedure Tf.ReporL. Next, the percentage of time
worked and the number of customers served by each attendant are printed.

with Integer Text_10. Text-10. Aki;
with IV;
use IntegarText_10, Text 10;

package body Gsp is
C0STMGSUR QUEUE -- 131!T is e=*cted upon elaboration

:3.1 AI.List :- 3.1 AI.1nit;

procedure Report in
use Sim, Sia.Io;
Delia

constant STRIIN:

Title
*constant STRING:

GAS STATION SIIWDLRTIOKWOCT";

Indent
: constant Positive-Count :-4;

Col
: constant PositiveCout 20;

If w
: constant POSITIVE : 10;

DfW
: constant POSITIVE : 3;

Rf w
*constant POSITIVE :- fw - Dfv 1

continued

17

begin -- Report
SetC.1 (Zndent);
PutLne (Delia);
SetCal (Indent);
Put Line (Title);
SetCal (Indmnt);
Put_Line (Deli.);
SetCal (Indent);
Put Line ("IN1PUT PARAMETERS");
SetCal (Indent);
Put(C"Attendants");
Set Col(Cal);
Put(uber Of Attendants, Ifw);
New Line;
Set Cal (Indent);
Put ("Mman Interarrival Time");
Set Col (Col) ;
Put (MeanInterarrival-Tim, Rfw, Dfv, 0);
NewLine;
SetCal (Indent);
Put("Mean Service Time");
Set-Cai(Col);
Put (hMan Service-Tims, Rfw, Dfv, 0);
Now-Line;
SetCal (Indent);
Put("Ran Time");
Set-Col.(Col) ;
Put (Run Time, Rfw, Dfw, 0);
New-Line;
SetCal (Indent);
PutLinet(Deli.);
SetCal (Indent);
Put.-Line ("RESULTS");
Sot Cal (Indent);
SetCal (Indent) ;
Put ("SIMULATION TIM");
SetCal (Col) ;
Put(Ev.Clock, Rfw, Dfw, 0);
NowLine;
SetCol(Indmnt);
PutLine ("CUSTOMER. QUEUE");
Set Cal (Indent);
Ai.Report (Ri Ai.Var(CuamrQueue));
SetCol(Indent);
Put Line ("SERVICE TIM");
Set Cal (Indent);
Tf. Report (St) ;
Set Cal (Indent);
PutLine (Dlia);
far This in Attendants loop
SetCal (Indent);
Put,_Line ("Attendant" a INTEGER' Image (This) G
Set Col (Indent) ;
Put ("Time Worked");
Set Cal(Cal);
Put ((Attendant (This) .Time-Worked. I Av.Clock) *100.0, Rfw, 2, 0);

Now-Line;
Set Cal(Indent);
Put("Customers Served");
Set-Cal(Cal);
Put (Attendant (This) .CustomuServed, Ifw);
New Line;

end loop;
Put Line (Dlia);
NowLine;

end Report;
end GaXp;

18

2. Package Gs.v Specification and Body

TheC Package specification Gs.Yv, given below, defines Stop-Service as an array of events.

CustomerArrival and Stop-Simulation are defined as events.

with GvsZ IV;

package Gs lv is

Stop_ ervice

array (Ga X.Attendants)
of Ivivent;

Customer Arrival
: v.ivent;

Stop Similatica
: I.vivnt;

evd Ga lv;

The package body, below, loops on the number of attendants. Within the loop,
STOP-SERVICE, indexed for each attendant, is assigned an event. The next statement uses the
procedure EV.SetLPriority to set the scheduling priority of the event record to 1. In this
simulation, all events have a priority of 1.

The next statement sets the size of the array of integers pointed to by Stop-ServiceVAR
to 1. The following statement initializes the value of this array to index ID for the attendant. In
this simulation, only one ID number is needed: the attendant ID. In other simulations, Larger
arrays may be needed to store other ID numbers.

Following the loop, events are created for CustomerArrival and Stop-Simulation. Then
the scheduling Priorities for each are set to 1.

with G3;
package body 05KZV is
begin

f or ID in OS - .A!TTBUDANTS loop
STOPSIRVIN (ID) :- G .U(GB. STOPSERV1CK); -- Create& events

-- for Stop Service.
NV.stpriority (STOP SIZR'JCl (ID),l) -- Assigns priority

-- of 1 to stop Service.
Stop_ Service(ID) .VAR -new ZVArray of I.nteger(0. .0); -- set

-range of VAR.
Stop S erViae(ID) .Vaz (0) :- ID; -- Assign attendant ID to index

-- ID.
end loop; -- Attendant ID number is the

-only ID have in gas station
-- simulation.

Customer_-Arrival :- GB .U(GD.Customr Arrival); -- create&
-- events for Customer Arrival1.

continued

19

Stop Siulation :- as.NU(GS.Stop imulation); -- Creates
-- events for Stop imulation.

IV. setpriority (CustomerArrival. 1); -- Assigns priority of
-- 1 to austomer-arrival.

IV. etpriority (Stop_&smlation, 1); -- Assigns priority of
-- 1 to stop_ simulation

end 08 IV;

3. Procedure GSStation

The driver procedure, GS....Station, defines Customer _Generator and Stop__Sim to be events,
while Arrival is of type SumReal. This procedure is shown below. The procedure begins by
randomly selecting an exponentially distributed arrival time when using the first stream of random
numbers and a user-specified mean interarrival time. The next two lines make Customer_Generator
an event whose discriminants, Job and Group, both have a value of 1. The next two statements
do the same thing for StopSlim.

Then a customer arrival is scheduled to occur after the delta time Arrival, and simulation
is scheduled to stop after the delta time Gs...Xp.RurTimne. The next statement starts the
simulation. Gs.Gs,_Simulation.Start is a call to the generic package Ev.Simulation, which contains
procedure Start. Finally, procedure Gs-Xp.Report prints the simulation inputs and results.

with Iv;
with Sim, Random, Go, Go v, Gs p;

procedure o-Station is
Customer Generator

Iv.lvent;

Stop i.
I v.2vent;

Arrival
Sim.Real;

begin -- GosStation
Arrival :Z Random.lxponential (1, Os~xp.Ixanlnterarrival_Time);

CustomerGenerator := Gos.ftu(Gs .Customer Arrival);
lv.SetPriority(Custoasr Generator, 1);-
Stop im :- Os.mu(Gstop imulation);
Iv.Set Priority (Stop Si., 1.);
Iv.Delta Schedule (Time = Arrival, Evnt -> CustomerGenerator);
Iv. DeltaSschedunle (Tim- GoXp .RunTime, Ivnt >SoSi)

On.GsSioulation. Start;
Gozp .Report;

end o-Station;

20

3.3.7 Compilation Order

The compilation order for the gas station problem is given below.

ada/list qa dispataher .ada
ada/list ga_. ada
ad/list 9soada
ada/list gaxp_. ada
ad/list gaxpada
ada/list gev_. ada
ad/list gs"ev.ada
ada/list gas.stcp sinlatLon .ad&

ada/list gsop_stop_asulation 7ada
ada/list ga poustoma arrival .ada

ada/list go p apustaomr arrival. ada
ada/list gs p stop jsrvice . ada
ada/list gs.dispatcber.ada
ada/list q" op stop service ada
ada/list gsatation.ada

21

4.0 USING PACKAGE EV

This section, contains a description of package EV. All EARS simulations use data
structures and subprograms that are defined in package EV. First, the package specification will
be discussed and shown. Then specific examples will be given that illustrate a use of the more
complex subprograms.

4.1 EV PACKAGE SPECIFICATION

The user should refer to the EV package specification given below when reading this
section. This specification has been heavily commented. Many details not discussed in the text of
this section are provided in the comments. The most relevant aspects of this package will be
described in the sections that follow.

with Sim, Text 10, Hex;
use Sim, Text_1O;
package Xv is

-- The simulation clock is initialized to 0.
Clock

Real :- 0.0;

-- Stop_Immediately is an exception that may
-- be used by the modeler. It is not used in
-- package EV. Stop-Immediately and Simulating
-- provide a capability for graceful simulation
-- termination.
StopImmediately

: exception;

Simulating
BOOLEAN :- FALSE;

-- Imediately represents the "earliest possible" time.
Immediately

constant Real :- Real'First;

NoPriorityChange is used in procedures

- V.Delta Schedule and EV.Abs Schedule to indicate
-- that the-priority does not change.
No PriorityChange

: constant INTEGER :- 0;

-- The lowest usable priority is 1.
LowestPriority

constant INTEGER :- INTEGER' Succ (No Priority Change);

-- The highest priority that a user can specify is 31.
HighestPriority

constant INTEGER :- 31;

-- Defines range of scheduling priorities that
-- are used internally in EVADA.
subtype EVENT_PRIORITYRANGE is

NATURAL range No Priority Change .. HighestPriority;

-- Defines range of scheduling priorities
-- available to the user.
subtype EVENTPRIORITY is

NATURAL range Lowest_Priority .. Highest Priority;

continued

22

-- Defines type for array of integers that is used for
-ID& in Event Roe.

type AM OF-UZGER is
array (MITbRAL range <>)

of XNMKGX;

-- lylE PARAM points to array of integers where ID
-- numbers are stored.

type EVENT PIANR in
access ARRAY OFINTEGER;

-- vada is used to represent events that are internal
-to EVADA.

Evada
constant :- 0;

-- Last-Group is the largest Group number that a user
-my use.

Last-Group
constant :- 31;

-GROUP TPE is range of Group numbers used internally
-- in EVADA.

type GRUP-TYPE is
new InTEZ range Evada .. LastGroup:

-First Usable-Group represents the first Group number
-that a user may use.

FirstUsable Group
4cnstant7GROUP TYPE :- GROUP TYPE' Suca (Evada);

S- in Group is the range of Group numbers that the user
n- ay use.

subtype SINGRUP is
GRUPTYPE range First Usable Group .. GRUPTYPE' Last;

-- First-Job and Last Job are the minimu and maximi
-job numbers that a user may use.

FirstJob
:coanstant :0;

Last Job
constant,: 127;

-SIN JOB is a type that spans the range job numbers.
type SINJOB is

now ITEGER range First Job .. LastJob;

-- Control contains event control information which the
-- user need not know.

type CONTROL is
limited private;

-- VENT REC is the EVADA event record.
-The discriminant Group is a number that allows the
-correct dispatcher to be selected for an event. it is
-only used for integrating simulations.
-- The discriminant, Job is a number that corresponds to
-an Event type that the user defines in the procedure
-that instantiates EV Cen. Job is needed when simulations
-- are integrated.
-- Var points to the array of integers that is used for

storing ID numbers.

continued

23

-- Ctrl is event control information that the user need
-- not know about.
type EVENTERC

Group : GROUPTYPZ;
Job SMK JOB) is

record
Var EVENT PARAM;
Ctrl CONTROL;

end record;

type EVENT is
access EVENT EC;

-- Ent is the currently executing event.
-- It can be used by procedures EV.Delta Schedule and
-- EV.Abs Schedule.
Ent

•EVENT;

-- Procedure Delta Schedule schedules an event to become active
-- at a simulated Eime of current time plue "Time". Parameter PRI
-- allows the user to change the priority.
procedure Delta Schedule

Time Sim.ieal;
lvnt EVENT :- Ent;
Pri EVENTPRIORITYRANGE :- NoPriorityChange);

-- Procedure Abs Schedule schedules an event to become active
-- at an absolute simulated time of "time".
procedure Abs Schedule

Time : Sire.Real;
Evnt : EVENT :- Ent;
Pri : EVENT PRIORITYRANGE :- NoPriorityChange);

-- Procedure SetPriority changes the priority in Evnt to
-- Pri.
procedure Set Priority

Evnt :EVENT;
Pri EVENTPRIORITYRANGE);

-- Procedure Remove removes an event from the ready queue.
-- Dispose - true means the event record is destroyed.
procedure Remove

Evnt : in out EVENT;
Dispose : BOOLEAN :- FALSE);

-- Function Activation Time returns the activation time
-- that an event is scheduled to occur.
function Activation Time

Evnt : EVENT
return Real;

-- Function Priority returns the priority of an event.
function Priority

vot : ENT
return EVENT PRIORITY;

-- Package Simulation is called with a maximum number of
-- priorities that the user needs and with the dispatcher
-- procedure that is generated automatically for the
-- users simulation.
generic

MaxPriority
EVENTPRIORITY; -- The highest priority required by

-- simulation.

continued

24

with procedure Dispatcher -- The dispatcher procedure
(vnt :EVENT) -generated by the user instantiation

-and execution of IV Gen.
package Simlation is

procedure Start; -- Starts the simulation.

end Simlation;

Fore
: NAIUMA 2;

Aft
: ATURAL :6;

Lip
*NATURAL :-0;

-Function Str, Time, and Id are used for
-- debugging purposes.

-- Function Str returns the hex representation of an
-event. It is used for debugging purposes.

function Str is
new Rex (EVENT);

-Function Time converts time from type Sim.Real
-to string.

function Time
T :Sia.Real
return STRING;

-Function Id converts Group and Job to
-- string "EGroup,JobI".

function Id
return STRING;

-I"faroup,7ob)"

-Procedures Switch 310, RIO, Switch_110, Create,
-- Close, Pio, and Err 10 below are also intended
-for debugging purposes. They may be called with
-or without the debugger. A modeler may wish
-to use the debugger to change the values
-of the next four flags by using the "deposit"
-feature of the VAX debugger.

-Sio On - TRUE mans output to monitor.
-Sio O is examined in procedure Sio.

BicoOn-
SWiaU :- 13.8;

-Sio Delta -TRUE means scheduling occurs in
-- delta time.
-- io Delta - false means scheduling is in
-- abolute time.

Sio Delta
3001L5 : TRUE;

-- io Time is scheduling time for procedure Switch Sio.
SioTime

Sim.Real;

-The scheduling priority for Switch Sio is set to 1.
Bio Fi

EVENT PRIORITY
:- EVET_ PRIORITY' First;

-Procedure Ewitch Sio specifies the time at which continued

25

procedure 810 is effective or ineffective.
procedure Switch Sic

Time SLz~eal :- Sio Ti..;
Pri : VENT-FRIORXTY :-Sio Fri;
Delta Sic : DOOLEAN :-SioDelta;
On : iOOLEAN :- SicOn);

%baWhn SicOn is true procedure Sic print out
-- Clock, Group, Jcb, and string to monitor.

procedure Sic
Str STRING;
Zel BOOLEAN :- TRUE)

P- ic On - TRUE means output to file.
PicOn7

NOOLEAN FALSZ;

P- ic Delta =TRUE means scheduling occurs in
-- delia time.
Pich Delta - FALSE means scheduling is in

-- absolute time.
Pic Delta

WOOLEAX :- TRUE;

-- ic Time is aceduling time for procedure Switch 110.
Pie Time

sin.Real;

-Scheduling priority for Switch FIO is set to 1.
Pie Pri

EVENTPRIORITY
:- EVENT PRIORITY' First;

-Procedure SwitchFic works like Switch-Sic,
-except that output is to a file.
-(The file is named in a string that is input
-to procedure Create below.)

procedure Switch Fic
Time Sim.leal :- Fie Time;

i EWENTPRIORITY :"Z Vic i;
Delta F10 : OOLEAN :- FicBelts;
On : OOLEAN :- FieOn)

F
FileType;

-Procedure Create uses Text IO.Create
-to create r with file-nam = F,
-- mods out file.

procedure Create
Fn : STRING)

-Procedure Close uses Text_10 Close
-to close F.

procedure Close;

-- hen Pic On is true procedure Pie writes
-out Clock, Group, and string to Fn, which is
-is input to procedure Create.

procedure Pic
Str STRING;
Edl : OOLEAN :- TRUE;
File: FileTyp :-F)

continued

26

-- Procedure Err 10 writes Date and Time,
-- Str (at), D1, Clock, and Kesage.
-- The input, NKg, is any user defined string,
-- such as "Crashing in procedure -.
prooedur Err_1O

Nag sI : ;

-- Beyond this point are implementation details
-- that are not of concern to the user.

-- Private portion of specification deleted in
-- this documentation.

type COUTROL is
record

Activation Time : Real;
Priority : -VZN _PRIORITY;
Queued : BOOLEAN :- FALSE;
Next : Event :- null;
Prev : vent :- null;

end record;

Bk Time -- See Delta Ik and Abs Bk below.
Sim.Real;

k Pri -- See Delta Bk and Abs Bk below.
EventPriority :-71;

-- The next thre procedures are used with a debugger.

-- Procedure Breakpoint is a null procedure that is
-- intended to be used to get to comand mode in a
-- symbolic debugger.
procedure Breakpoint;

-- Procedure Delta Bk calls EV.Delta Schedule using
-- the parameters t--Time, Break _v, and Zk-Pri
-- which are defined above. The values for these
-- parameters are defined using the debugger.
procedure Delta 2k;
-- Considers Bk-Tims a Delta time and schedules procedure
-- "Breakpoint" to occur when Clock - Now + 3k Tim, at
-- priority - BkPri.

-- Procedure Abs Bk calls ZV.Abs Schedule and is
-- used in the same manner as Delta Bk.
procedure Abe Bk;

end Ev;

4.1.1 EVENTREC

The EARS event record, EVENTREC, contains scheduling and other information that is
associated with an event. EVENTREC contains the discriminants Group and Job. The intent of
the discriminants is to allow different simulations to be integrated. Group is a number that is
associated with a simulation. Simulations that may potentially be integrated should be assigned
different Group numbers. A user may assign a Group number from I to 127. The Job number is
associated with the event types that are defined in the EVGen instantiation procedure. Job
numbers range from I to 31. Section 3.3.5 illustrates the assignment of Job and Group.

The parameter Var points to an array of integers that contains identification numbers. For

27

example, in the gas station simulation, there was an array of one number that contained an
attendant ID. Whereas, for a communication network simulation, the array may contain node IDs.
The Ctrl parameter contains information, such as scheduling activation time, that the user need not
be concerned about.

4.1.2 Event Processing Subprograms

The subprograms that relate to the processing of events are listed below. The package
specification provides the details needed for calling them. Procedures Delta_Schedule and
Abs_Schedule allow events to be scheduled to occur in a delta time and at an absolute time. The
scheduling priority may be set in the calls to Procedure DeltaLSchedule, AbsSchedule, and
Set_Priority. Procedure Remove is used to remove an event from the event queue and to
optionally destroy it. Function ActivationTime and Priority return the event activation time and
priority.

procedure Delta-Schedule
procedure Aba_Schedule
procedure SetPriority
procedure Remove
function Activation_Tine
function Priority

In EARS, priorities are used to break ties when more than one event is scheduled at the

same time. The event with the highest priority is scheduled first.

4.1.3 Package Simulation

The user must instantiate the generic package Simulation with MaxPriority, the maximum
number of scheduling priorities needed in a simulation (permissible values are 1 to 31), and the
dispatcher procedure that was generated automatically. The example below illustrates how to
instantiate this package with 18 scheduling priorities and the dispatcher procedure LH_Dispatcher.

package La!_Simulation is
new Iv.Simulation (Max Priority -> 18,

Dispatcber -> LEispatcher);

4.1.4 General Debugging Subprograms

The subprograms listed below are intended for debugging purposes either with or without
a debugger. The comments in the EV package specification explain their use.

28

function 3trz
function Tim
function Zd
prookeur Uvltah S1o
procedure So
prooed=e Svitchrio
prooedhre Create
procedure Close
procedure Fo
procmedue Err10

1. SwitchSio, Sio Example

The example below illustrates the use of SwitchSio and Sio. These procedures are used
to examine a sequence of events. The call to SwitchSIO schedules an event to occur in a delta
simulation time 20 with a priority of 1. The On flag is set to "true" when this event occurs. This
tells procedure Sio to print.

ZV.Switah SIO(Tiem -> 20, Pri -> 1, On -> true);

The Sio call, below, is placed in an event procedure whose timing is being examined. The
statement prints the user defined string followed by Clock, Group, and Job. The printing only
happens when the On flag is set to "true."

IKV.Sio(Str -> Transait for Node xz");

2. Switch.Fio, Fio Example

The following set of statements illustrates the use of Create, Switch Fio, Fio, Create, and
Close. This set of statements is provided to examine a sequence of events and to print relevant
information to a file. First, the output file must be created with the statement

XV.Create(Fn -> "LE lest File");

The call to Switch_FIO schedules an event to occur in absolute simulation time 3 with a
priority of 2. The On flag is set to true when this event occurs. This tells Fio to print.

lV.Swtah Fio(Time -> 3, Pri -> 2, Delta 11o -> false,
On -> true);

29

The statement below is placed in the relevant event procedure. The user-defined string,
followed by Clock, Group, and Job, is printed to the output file. Printing only begins when the
SwitchFio On flag is set to "true."

IV.Fio(Str -> "Transmit for Node yy");

The next statement causes the printing to be disabled at absolute simulation time 1.

EV.Switch zO(Tia. -> 1, Deltario -> false, On -> false);]
Finally the file is closed with

XV. Close;]
4.1.5 Debugger Subprograms

The procedures and declarations listed below are designed for use with a debugger.

Sk Time Sim.Rsal;
Mk-Pri Event Priority;
procedure Breakpoint;
procedure Delta Sk;
procedure Abs Bk;
Break v :vent;
Breskj-ob sin Job;

These procedures allow a user to reduce execution time when running a simulation with
the debugger. Sometimes a simulation may run for 8 or 10 hours before a breakpoint is reached.
Using these routines can substantially reduce this time.

Their use can best be illustrated with an example. Consider the following scenario:
Assume that something unexpected occurred at 150.0 seconds into the simulation after procedure
X has executed more than 1000 times.

Without the aforementioned procedures, the user typically decides to track down the
problem by setting a breakpoint to occur at procedure X at time 150.0. This means that every
time procedure X is called, the debugger stops and the value of the simulation clock is checked.
Doing this increases the execution time by orders of magnitude over the time needed to reach that
point in the simulation when not using the debugger.

The user takes advantage of the breakpoint capability (in VAX/VMS) by executing the
following commands inside the debugger:

30

DUGW> set nodalo IV
DUG> dmpoalt Rv.3k Tim - 149.999

-- set tTime to break
Duo> met break lv .reakpoint

-- Tell debagger to break herm
DWG> call Abs Bk

-- icbedales Iv .reakpolnt at
-- absolute tine - 149.999

DBG> go

The debugger does no checking at all until procedure Ev.Breakpoint occurs at a simulation
time of 149.999. When it is reached, the debug prompt is displayed and the user then enters the
following:

DIG> met break X
DiG> go

Again, the debugger does no checking until procedure X is called. The debugger then
stops and gives the debug prompt. Execution speed under this scenario is not noticeably slower
than running the same program in the debugger with no breakpoints set.

The user who wishes to take advantage of this capability using a compiler other than
VAX Ada should be aware that the compiler must provide adequate support for run-time symbolic
debugging. This includes support for the equivalent of the VMS debugger "call," "deposit," and
"set break" commands.

31

5.0 LINKED LISTS

EARS contains six linked list packages: Lnk, Lnk_-AI, lnk-..TI, Link, Link_Ai, and
LinkTi. The linked list packages whose name begins with "Lnk" allow a user to store a copy of
an object in a linked list or to retrieve a copy of an object from a linked list. These packages are
instantiated with one generic parameter, that is of type ITEM. These packages do not support
generic parameters that are of a limited private type.

The packages whose names begin with "Link" use an access type. This allows a user to
manipulate objects in a linked list by pointing at them. These packages are instantiated with two
parameters. One is of type REC, which is the designated type of the access type ITEM, and the
other is of the access type ITEM. Rec can be a limited private type.

The linked list package names ending in "Ti" are used when the user wants to keep
statistics on queue length that are not related to time. "Ti" refers to the SIMCRIPT tallied integer
type.* Package names ending in "Ai" are used for maintaining time-dependent statistics on queue
length, such as average buffer length. "Ai" refers to the SIMSCRIPT accumulated integer type.*

The specifications for Ink and Link will be given with examples showing how to use
them. The specifications for the remaining linked list packages are very similar to Ink and Link
and so is their use. Each linked list package will be described.

5.1 Lnk

Ink provides subprograms that allow a user to store and retrieve copies of objects in a
linked list.

5.1.1 Lnk Specification

The Ink package specification is given below with detailed comments that explain how to
use the subprograms. The user should review this specification.

-- I Instantiate "L=K" with an object of type "ITEM".
--1 LEK defines an ordered linked list of type "LIST".
-- I The ordering of the list is determined by the type of
-- I operation used to insert Members into the list:
-- I ORDERING OPERATION
-- I 113O Append
-- L1FO Push
-- I Biro Instantiation of "Znel"

with Sim;

generic
type ITS is

private;

package Lnk in

continu

*CAC, Inc. 1983. SIMSCRIPT 115 Programming Language., Los Angeles, CA.

32

type LIST is
private;

function Ul
Lot :LIST
return MA!URAL;

- Return& the number of items in the list.
----------------- -----------

function mnit
return LIST;
----------------- -----------

-IReturn& an initialized list.
-IThis create a new linked lint that contains 0 items.
----------------- -----------

procedure Dump
Lont :in out LIST)

-IDmp removes all Items from a list.
--

procedure Dispos
Let :in out LIST)

--
-IDup and Deallocate resources.
--

procedure Traverse
Lot :in out LIST;
Ibr :out IT2K,
Found :out DOOLEAN;
Dr :Sim.Dir :- Sim.Normal)

--
-IInitializes a list traversal according to the DR
-Iparamter. For noneqity lists, if 'DR-Norml' then
-Ithe front elemsnt of "Let" is returned in "mbr" and
--Isuccessive calls to 'next' and 'Delete' return
--Ielements successively closer to the back of -Lot".
-- If 'DR-opposite' * then the back element of 'Lst- in
-Ireturned in '3br" and succenaiive calls to 'Next- and
"- Delete' return al emsenta successively closer to the

-Ifront of "Let".

-IIf "Lot" is empty then the value returned in Mbr in
-I"null" and the value of "Found" is false.
- -- - - - - - - - -- - - - - - - - -- - - - - - - -

procedure Next
Lot :in out LIST;
Nbr :out ITEM;
Found .out BOOLUN)

"- Next' may only be called after "Traverse', "Next'
-Ior 'Delete'. A call to 'Next' after a call to any
-Iother lint operation is considered erroneous and may
c- ause unanticipated results. For nonempty lists,
"-I Next' returns a member, but does not remove it from

-Ithe "Let'.

procedure Delete
Lent :in out LIST;
Nbr :out ITEM;
Found :out DOOLEMN) cont inued

33

-- I "Delete" may only be called after "Traverse", "Next"
-- I or "Delete". A call to "Delete" after a call to any
-- I other list operation is considered erroneous and may
-- I cause unanticipated results. For noneimpty lists,
-- I *Delete" returns a member "Mbr", and deletes from
-- I the list the member returned in the previous call to

-j"Traverse",* "Next" or "Delete". For example,
-Iconsider the following sequence:

-I Traverse (L,M,F, Normal);
-- I Next (L,,F;
-- I Delete (L,M,F);
-- I The call to "Delete" would have deleted the member
-- I returned from the call to "Next".

procedure Insert
Lot : in out LIST;
Mbr :ITEM) ;

-I"Insert" operates relative to "Traverse", "Next",
-Iand "Delete". If the direction is Normal, then
-I"Insert" inserts "Mbr" just before (i.e., toward
-Ithe front) the member returned from the last call
-Ito "Traverse", "Next", or "Delete". If the
-Idirection is Opposite then"Insert" inserts "Mbr"
-Ijust after (i.e., toward the back) the member
-Ireturned from the last call to "Traverse", "Next",
-Ior "Delete".

procedure Push
Lot :in out LIST;

Mr ITEM);

-- I LIFO Queueing Discipline

- Procedure "Push" inserts a member at the front of
-Ia list. It is equivalent to "Traverse, Insert"
-Iwith a direction of "Normal".

procedure Append
Lat in out LIST;
Hbr ITEM);

-- FIFO Queueing Discipline

-IProcedure "Append" Inserts a member at the Black of
-Ia List. It is equivalent to "Traverse, Insert"
--Iwith a direction of "Opposite".

procedure Pop
Lot :in out LIST;

M :out ITSM;
Found : out BOOLEAN)

-IFor nonempty lists, Pop deletes and returns the
-Ifront member of a list. If empty, it returns false
-Iin "found".

procedure Remove
Lot in out LIST;
Xbr :ITEM);

-- I Procedure Remove searches for Mbr in the list. If continued

34

--I it is found, it deletes it from the list.

generic
type VHOUE is

private;

-- I Package search uses a user provided function that
-- I defines the match. For ezaeple, the match may
-- I be cn one stemet in a record.

with function Match
Unk : VVKOUN;
Mbr :ITEM)
return DOOLIPN;

package Search is

-IProcedure Find begins at the start of Let to
-Isearch for Nbr that matches tick. On a hit, Mbr is
-Ireturned and Wound is set to true. User provided
-Imatch function doe the matching. Procedure Find
-Ialways returns first Mbr found.

proceduret Find
(Let :in out LIST;
tick :MINOUN;
]3br o ut ITZE;
Found :out DOOLDE)

-- I Procedure Wind Next works like Wind but is used
--Ifor subsequent calls to return next occurrences of

procedure FindNext
Lot :in out- LIST;
Unk : MEMOUN;
Dibr :out ITEM;
Found :out DOOLhAM)

--IProcedure Rmve starts at front of Let and
-Iremoves let occurrence of tick for which there in a
-Imatch, as defined in user provided match function.

procedure Remove
Let :in out LIST;
tink : NEMOUN;
Mbr :out ITEM;
Rsmoved :out BOOLEAN)

end Search;

generic
with function <

Its, Mbr :ITZM
return BOLEAN is <>;

procedure Thel
Lot in ot LIST;
Its ITM) ;

- -- - - - - - - - - - - - -- - - - - - - - - - - - -
-ISearches from back to front. HWbr when Its <- Xbr, Its

continued

35

-- I in Inserted on the Rva side of Nbr.
-- I --- -

PassedEnd Of List, UninitializedList
:exception;7

-Private portion of specification deleted in thin
-- documentation.

end Lnk;

5.1.2 Lnk Example

The use of all subprograms that are defined in package Lnk is illustrated in the example
below.

with Sim;
with Lnk;
with Text 10;
procedure TentLnk is

type TEST NMBERTYPE is
(ONE, TWO);

package Enum_10 in
now TextIO.Enumeration_10 (TESTNUMBERTYPE);

type VAhL-ARRAY is
array (1 .. 10)

of InTEGER;

type T REC is
record

Received :BOOLEAN;
Triesn NATURAL;
Dal :FLOAT;

end record;

package TPack is
new Lnk (TRC);

package I-Pack is
now Lnk (INTEGER);

TLint
:TPack.Lint;

bebr
TNEC;

-Initialize members that are of type
-- Ree.

Xbrl
:TNEC -(False, 1, 1.0);

Mbr2
T__N4C :-(TRUE, 2, 2. 0);

continued

36

Mbr3
:TE :-a (Faise, 3, 3.0);

IObr4
:T DZC : (TRUE, 4, 4. 0) ;

]Kbr5
:T-F&C :-(TRUE, 5, 5. 0) ;

Mbr6
:T DEC :-(TRUE, 6, 6. 0) ;

Mbr7
:T DEC :(THRE, 7, 7.0);

DMbre
:T DXC :-(TRUE, 8, 8.0);

I-List
:I Pack.List;

L
:INTEGER;

-Initialize members that are of type
-- integer.

Ll

L2
:INTEGER :2;

L3
:INTEGER :3;

U4
:INTEGER :4;

rod
: OOLEAN;

Removed
: OOLEAN:

Test Numb
TESTNUDMERTYPE;

No Of Items

Unk
INTEGER;

-- Function below used for generic function MWATCH in
-- package SEARCH.
-- When N and M match function A returns true.

function A
(: INTEGER;

K INTEGER)
return BOOLEAN is

begin -- A
if N - M then

continued

37

return TRUN;
also

return False;
end if;

end A;

package Slack is
new IPack. Search (INTEGER, A);

-Function below is imported for generic
-function "<-" which is used with procedure INC.

function Less important
L :INTUGiR;
R INTEGER)
return BOOLEAN in

begin -- Less Important
if L > R then

return TRUE;
also

return False;
end if;

end Loe-simportant;

procedure Include is
new I Pack. mdl (Loss-Important);

begin -- TestLnk
TextI0.Put(-Entor test number >)
mum_10 .Get (Test Numb);
case Test Numb is

when ONE ->
-- it initializes the linked list whose members
-- are T Roca.
T List :- T Pack.Init;

-- Next lin-e positions to front
-of T List. It is an empty
-linke*d list so Mbr is null and
-- Fnd is false.

TPack.Traverso(T .List, Mbr, Fd);
-- Next line inserts Mbrl in
-in TList.

TPack.Insort(T List, Mbrn);
-- Next two lines insert Mbr2
-in front of Mbrl and then
-Mbr3 in front of Mbr2.

T Pack.Inaert(T List, ler2);
T-Pak.Insert(T List, Hbr3);

-- Next two lines insert Mbr4
-- at end of list and then
-- lr5 after Mer4.

T Pack.Append(T_List, Mer4);
Tlack.ppend(T List, Mbr5);
-- Next line removes Nbrl from list.
T -Pack.Rsmove(T _List, Hbrl);
-: Number of ites" in list is 4.
No Of Items :- TPack.Nl(TList);
-- 7The order of TiList now-is:

-- lr3
-- br2
-- lr4
-- lr5

continued

38

-- Dump clears all members from list.
2Pack.Duxp(T List);
-- Number of Items in list in 0.
No Of Itemis :- TPack.Nl(TList);

-Netfour statements insert members so in
-- sequeontial order in list.
TPack.Push(TList, Nbr2);
iPack.Push(2T List, Nbrl);
iPack. Append (T_List, Nbr3);
!T.Paok. AppendC (_List, Dbr4);
-- Next statment positions to end of list.
Tlack.Traverse(T _List, M~br, Fad, Sim.Opposite);
-7 Move to second member from ad, Hbr3.
T aok.Next(T List, Nbr, Fad);
--7 Delete Whr3 from list.
T Pack.Delete(T List, Nbr, Fad);
-7 Reamove front member from list.
-- Front member is Nbrl.
T iack .Pop (T!List, Ibr, Fad);
-- No ofiteims below is two.
NoOfItems :- T Pack. Nl (T_List);
-- 7Dispose clears; list and deallocates

-- resources.
!ak.Oispose(TList);

when TWO ->
I- it initializes the linked list whose members

-are of type integer.
I List :- I Pack.Init;
-= No ofItems in list is 0.
No Of Item :- I Pack.Nl(I_List);
I acE.Push(I_List, L4);
I-pack.Push(I_List, L3);

Pack. Push (List, Li);
N- ext statement starts at end of I List and

-inserts L2 in front of first member of
-list that it is loe than.

Include(I _List, L2);
-- After INCLUDI the list is ordered:

-- Ll
L2

-- L3
U- L

-Find searches I-List from front for first
-- ir that matches UNK. Match is defined in
-- user provided function A above.

Unk :- 3;
S Pack.Find(I _List, tick, L, Fad);

-The value returned above for L is 3 and
-- Fad is true.

-Next statement searches for next match.
-In this case there ar* none end Fad is false.

BlPack.Find NeXt (I List, tick, L, Fad);
-Next statemnt removes member
-that matches UNK. Again match is defined in
-- user provided function A.
-- Values returned in L and removed are 3 and
-true respectively.

S-Pack .Remove (I List, tick, L, Removed);
end case;

end Test Lak;

39

5.2 Lnk Ai

Package Lnk_Ai closely resembles package Lnk. In addition to containing the same
subprograms as Lnk, package LnkA offers several additional capabilities. For example, LnkA
maintains accumulated integer statistics on queue length and provides a method for identifying
variables that may be graphed. The graphing capability has not yet been implemented. The
accumulated integer statistics on queue length are maintained automatically. To examine the
variable of statistics associated with a list, LIST, the user calls the function Var. The specification
for Var is

function Var
(Lat : LIST
return Ai.Variablo;

The statistics variable, Ai.Variable, is explained in Section 6.7.

The discriminant in the type statement, shown below, is a sequence number that identifies
the variable that might be graphed. The sequence number is incremented when the variable is
declared.

type LIST
(Seq :NATMIAL :- Stat.Seq(Stat.Ai) is
private;

5.3 LnkTi

Package LnkITi provides a capability for (1) storing and retrieving a copy of an object in

a linked list and (2) maintaining integer statistics on queue length.

5.4 Link

Package Link provides a capability for storing and retrieving objects in a linked list when
using an access type.

5.4.1 Link Specification

The package specification for Link is given, with comments, below.

-- I Instantiate "LINK" with an object "Rsc" and its acoess
-- I type "ITEM". LINK defines "LIST", an ordered linked
-- I list. The ordering of the list is determined by the
-- I type of operation used to insert M-mbers into the

continued

40

- list:
-I ORDBRING OF&RATION
-I FIFO Append
- Lxro Push

2-170U instantiation of "Xac"

with Sim;
generic

type NEC is
limited private;

type ITE is
access NEC;

package Link is

type LIST is

private;

function N1.
Lot : LIST
return NATURAL;

-- --
- Returns the number of items in the list.
-- -- -

function Xnit
return LIST;

-- -- -
-IReturns an initialized list.
-- -- -

function First
(Lot : LIST

return ITEX;
-- -- -
-IReturns the first member in the list (does not
-Idelete).
-- -- -

Procedure Dup
Let :in out LIST)

-- -- -
-IDump removes all Items from a list.
-- -- -

procedure Traverse
Lot in out LIST;
Mbr :out ITEm;
Found :out BOOLEAN;
Dr : 91.m.Dir :- Sim.Normal)

-IInitializes a list traversal according to the DR
-Iparameter. For noneqipty lists, if "DR-Normal" then
- the front element of "Let" is returned in "iMbr" and
-Isuccessive calls to "Next" and "Delete" return
-- ole men ts successively closer to the beck of "Lot". If
-I"DRopposite", then the back element of "Lst" is
--Ireturned in "Mbr" end successive calls to "Next" and
'- Delete" returns elements successively closer to the

-Ifront of "Let".
-IIf "Lot" is emty then the value returned in HWbr is

continued

41

-- I "null" and the value of "Found" is false.

procedure Next
Lit : in out LIST;
Nbr : out ITEM;
Found : out BOOLEAN);

--

-- J "Next" may be called after "Traversal", "Next" or
-- I "Delete". A call to "Next" after a call to any other
-- I list operation is considered erroneous and may cause
-- I unanticipated results. For nonempty lists, "Next"
-- I returns a member, but does not remove it from the
-- I "Lat".

procedure Delete
Lot : in out LIST;
Mbr : out ITEM;
Found : out BOOLEAN);

-- I "Delete" may only be called after "Traverse", "Next"
-- I or "Delete". A call to "Delete" after a call to any
-- I other list operation is considered erroneous and may
-- c cause unanticipated results. For nonempty lists,
-- "Delete" returns a member "Mbr", and deletes from
-- I the list the member returned in the previous call to
-- J "Traverse", "Next" or "Delete". For example, consider
-- the following sequence:
-- I Traverse (L,M,F, Normal);
-- I Next (L,M,F);
-- I Delete (L,M,F);
-- I The Call to "Delete" would have deleted the member
-- I returned from the call to "Next".
...

procedure Insert
Lt : in out LIST;
Mbr : ITEM);

-- I "Insert" operate* relative to "Traverse", "Next", and
-- I "Delete". If the direction Is Normal, then "Insert"
-- I insert "Mbr" just before (i.e., toward the front) the
-- J member returned from the last call to "Traverse",
-- I "Next", or "Delete". If the direction is Opposite
-- I then "Insert" inserts "Mbr" just after (i.e., toward
-- J the back) the member returned from the last call to
-- I "Traverse", "Next", or "Delete".

procedure Push
Lat : in out LIST;
Whr : ITEM);

- --------..

-- I LIFO Queueing Discipline

-- J Procedure "Push" inserts a member at the front of a
-- I list. It is equivalent to "Traverse, Insert" with a
-- I direction of "Normal".

procedure Append
Lot : in out LIST;

r : ITEM);

continued

42

--Ixr W Q ueueing Discipline

-IProcedure "Append" Inserts a aomber at the Back of a
-IList. It is equivalent to "Traverse, Insert" with a
-Idirection of "Opposite.

procedure Pop
Lot :in out LIST;
Mbr :out ITIM;
Found c ut BOOLEAN)

F- or nonempty lists, Pop deletes and returns the front
-Imember of a list. If emty, it returns false in

proceduzra Remove
Let in out LIST;
Mb~r ITEN)

-jProcedure Remove searches for Mbr in the list. If it
-Iis found, it deletes it from the list.

generic
type UOUE is

private:

--IPackage search uses a user provided function that
-Idefines the match. For example, the match may
-Ibe on one element in a record.

with function Match
Unk :U91KNOUE

1Wr:ITEM)
return BOOLEAN;

package Search is

-IProcedure Find begins at the start of Let to search
-Ifor Mbr that matches Unk. On a hit, 3Ibr is returned
-Iand Found is set to true. User provided match
-Ifunction is provided for matching. Procedure Find
-Ialways returns first Mbr found.

proceduare Find
Let :in out LIST;
Oak :UNDEOW,

1Wr:out ITEM;
Found c ut BOOLEAN)

- Procedure Wind Next works like Wind but is used for
--Isubsequent calls to return next occurrences of UNK.

procedr ind next
Let :in cut* LIST;
Unk :UNKNOWN,
Vbr :out ITEM;
Found :out BOOMUN)

continued

43

-- I Procedure Remove starts at front of Lst and removes
lo 1t occurrence of Unk for which there is a match,

-Ias defined in user provide match function.

procedure Ptemove
Lot :in out LIST;
Unk :UNKNOWN;
Dibr :out ITEM;
Removed :out BOOLRA)

end Search;

generic
with function (

Ita, Mbr :ITEM
return BOOLKAN is <>;

procedure Incl
Lot :in out LIST;
Its: ITEM);

- -- - - - - - - - - - - - - -- - - - - - - - - - - - -
- Search*s frcm back to front. Mbr when It= <-)Ebr, Itm
-Iis inserted on the Rye side of ldbr.
- -- - - - - - - - - - - - - -- - - - - - - - - - - - -

generic
with procedure Free

(Mr:in out ITEM;
procedure Destroy

Lot :in out LIST)
- -- - - - - - - - - - - - - -- - - - - - - - - - - - -
- This routine Dumps and FRE~s every element in the list,
-Ithen "uninitializes" the list.
-- -- - - - - - - - -- - - - - - - - -- - - - - - - - -

Null Item, PassedEdOfList, UninitializedList
e xception; z

-Private portion of specification deleted in this
-- documeint.

end Link;

5.4.2 Link Example

The example below ilustrates the use of the subprograms contained in the package
specification Link. This example closely resembles the example given in Section 5.1.2.

with Unchecked Deallocation;
with Sim;
with Link;
with Text-10;
procedure Test-Link is

type TEST UNMR TYPZ is

continued

44

(On, .T)

package Rnum XO is
new Tezt 10 .IniiraticoO (TEST UWUER TPE);

type VAL. EREIY is
array 'Ti. 10)

of InammE;

type 2T EC is
reord

Received : OOLIE;
Tries :NATURAL;
Del :]r0K!;

end record;

type TPTR is
access TJEEC;

package T Pack is
new Lial (TPZC, TPTR);

type IP is
access INTEGER;

package I Pack is
new Link (InTAGE, IP);

T-List

TPack.List;

-- Define memibers that are of access type.

br
:TPUR;

]Ibrl
:TPMR;

Mbr2
:TPUR;

Nbr3
:2 PUR;

Nbr4
:T PmR;

Mbr5
:T-PUR;

NbrG
:T-PU;:

Mbr7
:T-PUR;

Nbre
:T-PUR;

Unk2
:T PU;

I-List

continued

45

I-Pack.List;

-Define members that are of type

-- integer.

Ll
IP;

L2
IP;

L3
TIP;

U4
IP;

L
IP;

Fnd
:BOOLKAN;

Removed
:BOOLEAN;

Test Numb
TEiSTNUNBERTYPE;

NoOfItems
NATUL;

Unk
INTE&ER;

-Procedure Free is input to generic procedure Destroy.
-- Destroy dumps end free& every element in a list and
-then "unitializes" the list.

procedure Deallocate is
new Unchecked Deallocation (TREC, T-PTR);

procedure Free
(P :in out TPTR

ren ams aDeallcate;

procedure Destroyer is
new T Pack .Destroy (Free);

-Function A is used for generic function MATCH in
-package SZARCH. When N and M match, function A
-- returns true.

function A
(N :INTEGER;

K IP
return BOOLEAN is

begin -- A
return N - Mall;

end A;

-- Function B is used for generic function MATCH in
-package SEARCH. When N end M match, function A

continued

46

-- returns true.
function 3

M TPUR;
M T-PTR
return 300LVAN is

begin -- 13
if N.D.1 - 11.0.1 then

return TRUE;
also

return False;
end if;

end B;

package S _Pack is
new IPack. Search (INTGZR, A);

package U Pack in
new T Pack. Search (TPTR, 3);

-- Function below is imported for generic
-- function "<-" which is used with procedure INc.

function Less_1mportant
L 12;
R XP
return BOOLEAN is

begin -- Less-ImpOrt ant
return L.all > R.all;

end LessImportant;

procedure Include is
new I-Pack. Thai (Less-Important);

begin -- Test-Link

-- Initialize members.
Mbr :-new T 1EC;
Mbrl -new TKEZC'(Falae, 1, 1.0);
Mbr2 :-new T NRC' (TRUE, 2, 2.0);
1br3 :-new T NEC' (False, 3, 3.0);
]Hbr4 :-new TFhEC' (TRUE, 4, 4.0);
IlbrS :-new TPRZC'(TRUE, 5, 5.0);
Wbr6 :-new T7REC'(TRUE, 6, 6.0);
Nbr7 :nwTNERC(TROE, 7, 7.0);
NbrS -now TREC'(TRUE, 1, 8.0);
Unk2 :nowTNERC(TRUE, 1, 1.0);

Li new INTEGE' (1;
L2 -now INTEGER' (2);
L3 -new INTEGER' (3);
LU now INTEGE' (4;
L :-new IUTEZR;

Text IO.Put("Enter test number >)
EntnmO. Get (Test Numb);
case Test-Numb i

when On ->
-Init initializes the linked list whose members
-- are T Reca.
T List :- T Pack.Init;

-Next lin; positions to front
-of T-List. It is an empty

continued

47

-linked list so Mbr is null and
-- nd is false.

TlPack.Travsrse(T _List, Mbr, Fnd);
-Next line inserts Hbrl in
-- in T List.

T Paok.lnsert(T _List, Nbrl);
-- Next two lines insert)4br2
-in front of Mbrl and then
-- br3 in front of Nbr2.

TPack.lnsort(T_List, Mbr2);
!FPack. insert (! List, Hbr3);

-- Next two lines insert)Abr4
-at end of list and then
-- r5 after Mbr4.

TPack.Apend(T_List, Nbr4);
T Pack.Apend(T _List, N4br5);
-- Next line remove& IMbrl from list.
TPack.Remove(T _List, Hbrl);
-- Number of items in list is 4.
NoOf Items :- TPack.Nl(T _List);

-The order of TList now is:
M-3br3

Mb3Ar2

-- Mbr4

-- Mbr5

-- Dump clears all members from list.
T Pack. Dump (7_List) ;
-- Number of ites in list is 0.
NoOf Items :- TPack.Nl(T_List);
-- Next four statements insert members so in
-- sequential order in list.
T"ack. Push (2TList, 14br2);
"_ack. Push (T Lisat, 14rl);
" ack.Append(CT List, b~r3);
Tl ack. Append (T List, iMbr4);
-- Next statement positions to and of list.
TlPack.!raverss(T List, Mbr, Fmd, Sim.Opjtsite);
- - Move to second member from end, Nbr3.
T _Pack. Next (T List, Nbr, Fnd);
-- Delete 3Obr3 from list.
TlPaok.Delete (T List,)dbr, Fnd);

R- emove front member from list.
F- ront member is Hbrl.

T Pack.Pcp(T_List, Mbr, Fnd);
-- No-of-Items below is two.
NoOf-Items :- TPack.Nl(T List);
-- Get first member in list.
Hbr :- T Pack.First(T _List);
-- See if next member matches tJMK2;
1UPack. Find (T .Lisat, Unk2, Hbr, Fnd);

-- Dump and frees elements in T_-List.
-Then "uninitialize" TList.

Destroyer (!TList);
when TWO ->

-- it initializes the linked list whose mbers
-- are of type integer.
I-List :- I-Pack.Init;
-- No-ofItems in list is 0.
NoOf Items :- I-Pack.Nl(IList);
IPack.Push(I List, U4);
I;Pack.Push(TList, L3);
Ijack.Pusb(Iist, Ll);

-Next statement starts at end of I List and
-inserts L2 in front of first membeWr of

continued

48

-- list that it is less than.
Include(IList, L2);
-- After INCLUDS the list is ordered:
--- L

-- L2
-- L3
-- L4

-- Find searches I List from front for first
-- Dbr that matches MaK. Match is defined in
-- user provided function A above.
Unk :- 3;
Slack.Find(I.List, Unk, L, Fnd);
-- The value returned above for L is 3 and
-- Fnd is true.

-- Next statement searches for next match.
-- in this case there are none and Fnd is false.
SP-ack.Find Net(IList, Unk, L, Fnd);
-- Next statement remove& member
-- that matches UMK. Again match is defined in
-- user provided function A.
-- Values returned in L and removed are 3 and
-- true respectively.
8 Pack.Remove(I List, Unk, L, Removed);

end ase;
and Test_Link;

5.5 Link Ai

Package Link Ai is similar to package Link. LinkAi provides the additional capability of
maintaining accumulated integer statistics on queue length and a means for identifying variables
that might, in the future, be graphed.

The function below (as in package LnkAi, Section 5.2) allows the user to get the
variable that contains the statistics on queue length.

function Var
(Lot : LIST
return Ai .Variable;

The discriminant for the type statement for the list (also as in package LnkAi) is a

sequence number that identifies a variable that might be graphed.

5.6 LinkTi

Package LinkTi is also similar to package Link. LinkTi provides the additional
capability of maintaining tallied integer statistics on queue length. The sequence number for
graphing is also kept as a discriminant in the "type LIST' statement.

49

6.0 STATISTICAL PACKAGES

EARS contains seven primary statistical packages. The first three that will be discussed,
package Rand, RandomDistribution, and Random, are used for random number generation. The
remaining, packages, Ti, Tf, Ai, and Af, are used for maintaining and reporting tallied integer,
tallied floating point, accumulated integer, and accumulated floating point statistics. The terms
"tallied" and "accumulated" are defined in the C.A.C.I. publication.* The equations used to
calculate the tallied and accumulated mean and variance are given in the package specifications
for Ti, Tf, Ai, and Af.

EARS also contains package Stat. When writing a simulation the user does not need to
write any code that uses anything in this package. Therefore this package specification will not be
included :n this guide.

6.1 PACKAGE Rand SPECIFICATION

The package Rand specification, shown below, contains three subprograms. The first,
function Number, returns a pseudorandom number between 0.0 and 1.0. The next two, procedure
SaveStreams and Restore_Streams, save and restore the values in the random number streams.

with Sim;

package Rand is

subtype STREAM RANGE is
INTEGER range I. .. 100;

-- Number returns a random number using a seed found in the -- designated
stream.

function Number
(Stream : STREAM RANGE

return SLm.Real;

-- Save Streams writes the stream of seed& to the disk
-- file-File Name.
procedure Save Stream

FileName - STRING);

-- Restore Strewm- reads in the stream& from disk file
-- File Name.
procedure Restore Streamw

(File-Name : STRING);

end Rand;

6.2 PACKAGE RandomDistribution SPECIFICATION

Package RandomDistribution, given below, contains functions that allow a user to
generate random numbers from uniform, exponential, normal, and poisson distributions, as well as
from a step function. In EARS, package Random_Distribution is instantiated in the package
Random specification, which is given in the next section.

* CACI, Inc. 1983. SIMSCRIPT !!.5 Programming Language. Los Angeles, CA.

50

with Sim;
use Sim;

generic
STREAM RANGE ranges from 1 to the naxlmm

-- number of streams.
type STREIA RANGE is

range <>;

-- Function Produce Random return& a random
-- generator seed.
with function Produce Random

Stream : STRZW RN
return Real;

package RandomDistribution is

function Uniform
Stream : STREAM RANGE;
A : Real :- 0.0;
B : Real := 1.0
return Real;

function Exp,, ential
Stream STREAM RANGE;
Lanbda Real
return Real;

function Normal
Stream : STREAMRANGE;
Mean : Real;
Standard Deviation : Real
return Real;

function Poisson
Stream : STRAMRANGE;
Lambda : Real
return Real;

-- Function Step returns a uniformly distributed
-- random number, that is an integer, in the
-- range Low to Hi.
function Step

Stream STREAM RANGE;
Low, Hi :NTEGER
return INTEGER;

end Random Distribut ion;

6.3 PACKAGE Random SPECIFICATION

This specification, shown below, contains the instantiation of RandomDistribution that is
used for EARS simulations. The stream range is from I to 100 for the VAX/VMS random
number generator. A user may supply his or her own random number generator that has a
different stream range. The function Number in package Rand is used to provide the seed.

with Rand, RandomDistribution:
package Random is

new Random Distribution (Stream Range -> Rand.Stream_Range,
Produce Random -> Rand. Number);

51

6.4 PACKAGE Rand and RandomDistribution EXAMPLE

The example below illustrates how these random distribution packages are used.

with Random;
with Sim;
with Rand;
procedure Exampls-Random is

Timel Sim.Real;
Tim*2 Sim.Rsal;
TiMe3 Sim.Real;
Tlme4 Sia.Raal;
Tims integer;

begin
-The next 5 executable statements illustrate how random
-numbers from different distributions are obtained when
-Rand.Number is the procedure that provides the random
-number. Remember, this is true because in package
-Random the generic package RandomDistribution ia
-instantiated such that function Rand .lumber returns
-the seed.

-- Get a random variable from a uniform distribution that
-ranges from 0.0 to 5.0.
-A seed from stream 1 is provided by function
-- Rand.Number

Timel :- Random.Uniform(,0.0,5.0);
-- Timel - 1.73500448465347

-- Got a random variable from a uniform distribution that
-ranges from 0.0 to 1.0.
-- A seed from stream 1 in provided by function
-- Rand.Number

Time2 :- Random.Uniform(l);
-- Time2 - 7.5552463531494141-003

-Get a random variable from an exponential
-- distribution whose mean is 0.5.
-A seed from stream 1 is provided by function
-- Rand.Number

Time3 :- Random.Lponential(1,0.5);
-- Time3 - 8.9373453088236339-002

-- Get a random variable from a normal distribution
-- whose mean is 10.0 and standard deviation is 1.0.
-Same seed as above.

Timm4 :- Random.Normal(1,1O.0,1.0);
-- Tims4 - 10.5573352087283

-- Get a random variable from a uniform distribution that
-ranges from 0 to 99. The random variable is an integer.
-Same seed as above.

TimeS :- Random.Step(1,0, 99);
-- TimeS - 0

-The next statement illustrate the use of procedure
-Rand.SaveStreams which maven the current stream of
-random number seed& that is defined in package body
-Rand. They are saved in file StreamFilel.

Rand. Save Streams ("Stream Filel");

-The next statement reads this stream from file
-Stream Filel, back iktto package body Rand.

Rand.R&store Stream ("Stream-Vilel");
end Example Random;

52

6.5 PACKAGE Ti SPECIFICATION

The specification for package Ti is given below with comments. This specification defines
a variable type for maintaining statistical information and provides procedures required for
maintaining and reporting tallied integer statistics. The procedure Reset is used to reinitialize the
values in the user's parameter that is of type VARIABLE. This is only done to reinitialize the
values. The initialization of these values is automatic to the user. Procedure Assign is used to
continuously update the statistical information. Procedures Mean, Variance, and StdDev calculate
and return these statistics. Procedure Report writes out these statistics and additional information
to either the user's monitor or to a file. Procedure Brief writes out statistics and additional
information that is needed for graphing to a file. Procedure Report writes descriptive words (in
strings) next to the data, so that the file is easy to read. Procedure Brief only writes out the data.

When using procedures Mean, Variance, Std Dev, and Repoit, the user has the option of
either having exceptions raised within the procedure or having an Error_-Type returned to the
calling procedure.

with Sin, TextTO, Stat;

use Sin, Text_10;

package Ti is

-- Zrror Type contains types of error& that may be
-- propagated from the subprograms in this
-- package.
type ERRTM is

(NON, oNSTRAINT , NODA, OTMR);

-- Variable is the type definition for records
-- where statistical information is stoaed.
-- The discriminant, Seq, contains an ID number
-- that is intended to be used for graphing
-- purposes. It may, for example, be used as a
-- node ID. Procedure Brief, below, writes
-- statistics to a file which later may be graphed.
type VARIASLE

(Seq : NATURAL :- Stat.Seq(Stat.Ti)) is
record

N : NATURAL :- 0;
Sum X : NATURAL :- 0;
Sn : Real :- 0.0;
Max X INTZGER :- INTEGR'First;
Min X : INTFER :INTEGER'Last;
X : INTEGER;

end record;

procedure Reset
Var : in out VARIABLE);

-- I Resets Stats;

procedure Assign
(Var : in out VARIABLE;
Value : INTEGER);

-- J Assign a new value to the variable.

continued

53

-- The equation below is used to calculate the mean.

-- amu(n) = sum of n values/n

-- where n represents the number of observations and
-- what is inside parentheses is a subscript

-- The equation below is used to calculate the variance.

-- S(n+l) - S(n) + [n/[n+l]] * (x(n+l) - au(n)]**2 --
-- V(n+l) - (1/n] * S(n+l)

procedure Man
(Var : VARIABLE;

Result out Real;
Error out ERROR TYPE;
Propagate : BOOLEAN := TRUE);

-- I Return the average value of the variable.
-- J Exceptions may or may not be propagated.

procedure Variance
(Var : VARIABLE;
Result out Real;
Error out ERROR TYPE;
Propagate : BOOLEAN :- TRUE);

-- Return the variance of the variable values.
-- I Exceptions may or may not be propagated.

procedure Std Dev
Var : VARIABLE;
Result out Real;
Error out ERROR TYPE;
Propagate : BOOLEN :- TRUE);

-- Return the standard deviation of the variable values.
-- I Exceptions may or may not be propagated.

procedure Report
(Var : VARIABLE;

Propagate : BOOLEAN :- False);
-- I Prints statistics, in human readable form, to monitor.
-- I Exceptions may or may not be propagated.

procedure Report
F : File-Type;
Var : VARIABLE;
Propagate : BOOLEAN :- False);

-- I Prints statistics, in human readable form, to a file.
-- I Exceptions may or may not be propagated.

procedure Brief
(: File-Type;

Typ Stat.Id;
Var VARIABLE);

-- Writes Brief report to a file according to format
-- I specifications defined in package Stat. File contains
-- I statistics and is intended for graphing purposes.
-- I Typ is a 4 character string ID provided by the user

end Ti;

6.6 PACKAGE Tf SPECIFICATION

This specification, shown below, defines a variable type for maintaining statistical
information and provides procedures required for maintaining and reporting tallied floating point
statistics. The package Tf specification, which is given below, is similar to the package Ti
specification. The comments explain the relevant aspects of this specification.

54

with Sim, Text_10, Stat;

use Sim, Text 10;

package Tf is

-- rror _Typo contains types of errors that may be
-propagated up from the subprograms in this
-- package.

type ZIMR TYPE is
(OE, CONTRAINT, NODATA, OTHER;

-- Variable is the type definition for records
-where statistical information is stored.
-The discriminant Seq is a sequence number that is
-an ID number that is needed for graphing purposes.
-Procedure Brief writes statistics to a file
-- which later may be graphed.

type VARIABLE
(Seq :NATURAL :- Stat.Seq(Stat.Tf))is

record
IS INTEGER :-0;
Sun X :Real :-0.0;
Sn -Real :- 0.0;
MaxX :Real :-Rsal'lirst;
KinX :Real -Real'Last;
X :Real;

end record;

procedure Reset
Var :in out VARIABLE)

- Resets Stats;

procedure Assign
Var :in out VARIABLE;
Value :Real);

- Assign a new value to the variable.

-- &s equation below is used to calculate the mean.

an u(n) - sum of n values/n

-- where n represents the number of cbsex .. zions and
-- what is inside parentheses is a subscript

-The equation below is used to calculate the variance.

- S(n4-l) 9 8(n) + in/ ln+l]] Ix (n+l) - m n *

-- V(n+l) -(1/n] * S(n+l)

procedure Mean
(Var :VARIABLE;
Result out Real;
Error out HOR TYPE;
Propagate :BOOLEAN :- TRUE)

-IReturn the average value of the variable.
--IExcpt ions may or may not be propagated.

procedure Variance
Var :VARIABLE;
Result out Rleal;
Error cut MOR TYPE;
Propagate :BOOLEAN :- TRUEK)

-IReturn the variance of the variable values.

continuod

55

-- I Exoeptions may or may not be propagated.

procedure Std Dev
(Var :VARIABLE;
Result out Real;
Zrror out ERROR TYPE;
Propagate : BOOLEAN := TRUE);

-- I Return the standard deviation of the variable values.
-- I Exoeptions may or may not be propagated.

procedure Report
(Var : VARIABLE;
Propagate : BOOLEAN :- False);

-- I Prints statistics, in human readable form, to monitor.
-- I Exceptions may or may not be propagated.

procedure Report
F File Type;
Var : VARIABLE;
Propagate : BOOLEAN :- False);

-- I Prints statistics, in human readable form, to a file.
-- I Exceptions may or may not be propagated.

procedure Brief
F : FileType;
Typ Stat.Id;
Var VARIABLE);

-- [Writes Brief report to a file according to format
-- I specifications defined in package Stat. File contains
-- I statistics and is intended for graphing purposes.
-- I Typ is a 4 character string ID provided by the user.

end Tf;

6.7 PACKAGE Ai SPECIFICATION

This specification defines a variable type used for maintaining statistical information and
provides the procedures required for maintaining and reporting accumulated integer statistics. This
specification is analogous to the package Ti specification. The specification with comments is
given below.

with Text 10, Stat;
use Text Y0;
with Sim;
use Sim;

package Ai is

-- ErrorType contains types of errors that may be
-- propagated from the subprograms in this package
type ZOR TXPE is

NON, CONSTRAINT, NODATA, OTHER);

continued

56

-- Variable is the type definition for records
-- where statistical information is stored.
-- The discriminant Seq is & sequence number
-that is in an XD number used for graphing
-purposes. Procedure Brief writes statistics
-for a file which later my be graphed.

type VARJANLE
(Seq : ATUA :- Stat.Seq(Stat.Ai))is

record
Initialized boolean :- false;
TO0 Real :-0.0;
T Last Real :-0.0;
Suma X Real :0.0;
SuikSquaresX Real :- 0.0;
Kax X : rATTI - INTEGER'lirst;
xin~ : IUTEGz :- ITEGER'Last;
X ZUTEGER;

end record;

procedure Reaset
(Var :in out VARZABLE)

-Rest Stats.

procedure Assign
Var :in out VARZA3LE;
Value I NTEGR);

-- Assign a new value to this variable.

-The equations below, which cams from the text,
-- SDUSCRIT 11.5 Programming Language", C.A.C.I.,
-(pg 390),* are used to calculate the man
-and variance.

SUNSsumation of x * fTIRU.V - Ti]
S- UN. OF.SQUR sumation of [x**21 * [TXM.V -TI

-MEAN SUl [TINE.V - TO]
-- MA.SQURR SON. 07.SQUARS/(TM.V - TO]
-VARIANCE MAN. SQUAR - MAN**2

-- where TIU.V is simulation clock tims,
-- TL Is the simlated tie at which an

-- an accumlated variable was set to
-- its current value, and

-- TO is the simulated tie at which
-- accumlation starts

procedure Kean
(Var :VARIABLE;
Result out Real;
Error cut EMOR TYPE;
Propagate : OOLEAN :- TRUE)

-- Return the mean value of the variable.
-- Exeptions may or may not be Propagated.

procedure Variance
Var :VARIABLZ;
Result out Real;
Error out ERIROR TYPE;
Propagate : DOLATN :- TRUE)

-- Return the variance of the variable values;
-- Exeptions may or may not be propagated.

procedure StdDev
(Var :VAPRBLE;

continued

57

Result out Real;
Error out ERROR TYPE;
Propagate : BOOLEAM :- T);

-- Return the standard deviation of the values.
-- Exceptions may or may not be propagated.

procedure Report
(Var ;VARIABLE;
Propagate : OOLEAN :- False);

-- Prints statistics, in human readable form, to monitor.
-- Rxceptions may or may not be propagated.

procedure Report
F : File_Type;
Vat : VARIABLE;
Propagate : BOOLEAN := False);

-- Prints statistics, in human readable form, to a file.
-- Exceptions may or may not be propagated.
procedure Brief

F : File-Type;
Typ Stat.1d;
Vat VARIABLE);

-- Writes Brief report to a file according to format
-- specifications defined in package Stat. File contains
-- statistics and is intended for graphing purposes.
-- Type is a 4 character string ID provided by the user.

end Ai;

6.8 PACKAGE Af SPECIFICATION

This specification, given below, defines a variable type for maintaining statistical
information and provides the procedures required for maintaining and reporting accumulated
floating point statistics.

with Sin;
use Sin;
with Text 10;
use Text kO;
with Stat;

package Af is

-- Variable is the type definition for records
-- where statistical information is stored.
-- The discrLminant Seq is a sequence number that
-- is intended as an ID number for graphing purposes.
-- Procedure Brief writes statistics to a file
-- which later may be graphed.
type VARIABLE

(S q :ATM :- Stat.Seq(Stat.Af)) is
record

initialized boolean :- false;
T 0 : Real := 0.0;
T-Lat Real : 0.0;
SM_ X: Real : 0.0;

continued

58

SuRZquaresX Real :- 0.0;
max X :Real :- 3al'First;
Kin7X :Real :-Real'Last;
X Real;

end record;

-- rrorTyp. contains types of error that may be
-propagated up from the subprograms in this
-- package.

type ERORTPE is
(ON, CONSTRLMR, NODATA, OTER

procedure Reset
(Var :in out VARIABLE)

-- Reset state.

procedure Assign
Var :in out VARIABLE;
Value :Real);

-- Assign a now value to this variable.

-- The equations below, which came from the text,
-"SDUICRIPT 11.5 Programming Language", C.A.C.I.,
-- (pg 390),* are used to calculate the mean end
-- variance.

-- SUN suimation of x * CTIME.V - TL]
- SME.OF. SQUARES summation of [x**2] * [TI3U.V -TL]

ME 3AN SUK/(TM.V - TO]
ME DAN. SQUARE 83M.OF. SQUMRS/(TME.V - TO]

-- VARIANCE WH.N.SQUARX - MM*

-- where TD .V is simulation clock time,
-- TL is the simualated time at which an

-= accumulatod variable was net to its
-- curent value, and

-- TO is the simulated time at which
-- accumlation starts

procedure Meen
(Var :VARIABLE;
Result out Real;
Error out ERRO TYPE;
Propagate : OLEAN :- TRUE)

-- Return the average of the variable.
-- Exception&smay or may not be propagated.

procedure Variance
(Var :VARIABLEC;
Result out Real;
Error out ERROR TYPE;
Propagate : OOLEAN :- TRUE)

-- Return the variance of the variable values.
-- Exceptions may of may not be propagated

procedure Std Dev
(Var :VARIABLE;
Result out Real;
Error out ERRORTYPE;
Propagate :DOOLEAN :- TRUE)

-- Return standard deviation of variable values.
-- Exceptions may or say not be propagated

procedure Report

continued

59

(Var :VARIABIZ;
Propagate : OOZM :- Yalae*tomnio

-Prints statistics, in human readable form,tomnor
-- Excptions may or may not be propagated.

procedure Report
Ir Iii._Type;
Var :VARRA;
Propagate : OOLEAR :- False)

-Prints statistics, in human readable form, to a file.
-- Excptions may or may not be propagated.

procedure brief
7 : ile-Type;
Typ :Stat.1d;
Var :VARIABE)

-Writes Brief report to a file according to format
-specifications defined in package Stat. File contains
-statistics and is intended for graphing purposes.
-Typ is a 4 character string ID provided by the user.

end Af;

6.9 PACKAGE Ti, Tf, Ai, Af EXAMPLE

The example below shows how the subprograms in these four packages are called.

-- This procedure illustrate& the use of the visible
-subprograms contained in packages Ti, Tf, Ai, and Af.

with Stat;
with XV;
with SIN;
with TY;
with TI;
with AI;
with AI;
with Text 10;
use SIN; -- Type Real is used from package SIM.

-- v.Clock is of type SIX.Real
procedure Stat-Zxample is

Type TestType is (TI _TeatTI TestAITestAITest);
package ZnumLO is new Text 10 Enumerat ion 10 (TestType);

-- Define parameters of variable type for the four
-- packages.

Tallied Var Tf TI.VARXABhZ;
Tallied Var Ti TI.VAIABLE;
AccumVarAi AN .VARIABL1K;
Accum -Var AI AZ .VARIBLl;

-The result and error variables, which are defined
-below, return the results and error type, respectively.
-from the Man, Variance, and Std Dev procedures.

Result Tf Real;
zrror ff TI'.Error _Type;
Result Ti Real;
Error Ti TI.Error _Type;

continued

60

Result A : Real;
Errorif : AMirror _Type;
RosultAi : Real;
Errorli : AX.rror _Type;

-- Tes-tT is a parameter that indicates which package
-- will be tested. Test-T will be input below.

TeatTy Teat _Type;
-Prop - true indicates that exceptions that occur in
-procedure Mean, Variance, StdDev, and Report will be
-- propagated up.

Prop :boolean :- true;
-- Otf and Otf2 are used when statistics are written to
-a file using procedure Report and Brief

Otf Teft 1O.Iile _Type;
Otf2 :TeX IO.Filoe Type;

-The ID& below are used in procedure Brief. They
-are used for graphing purposes to identify which
-- call to Brief the statistics are associated with.

ID Stat.ID :-"0001";
1D2 :Stat.ID :-"UDO2";
1D3 Stat.ID :"UD03";
1D4 Stat.ID :-"MD04";

begin
Text IO.Creat. (Otf2, Text IO.Out File. "Test Output");
Textio.put

(enuter TI TEST, TI TEST, MU-TST, or AX TEST >11);
Enum O.get (Test T);
came Test T is

when TFVTZST
-- Result Tf, which is returned from Kean, Variance,
-and StaDev below contains 0.0 and (no data] is
-printed to the users monitor from Report. This is
-true since no value has been assigned to
-- Tallied Var Tf. These procedures are normally
-- called only after a value has been assigned. If
-an error occurs, then it is propagated up.

TV.Nean(TalliedVarTf,RsultTf,rror-Tf,Prop);
TV .Variance (TaliedoVarTf, Result Tf, Error Tf, Prop);
TV .Std-Dev(TalliedVarTf, ResultTf, Error Tf,Prop);
TV .Report (Tallied Var Tf, Prop);

-The values 0.0 and 1.0 are assigned. This &ans
-that statistics for these values are being
-- maintained.

TY.Amaign(TalliedVarTf,0.0);
TV.Aasign(TalliedVarTf,1.0);

-The variance returned below in Result Tf is 0.25
-If an error occurs, it is not propagated up.

TV.Variance (TalliedVarTf,RsultTf,Error-Tf);
Ev.Clock :- 3.0;
TY.Assign (Tallied Var Tf, 2.0);

-- Create file, TV Test, that will contain statistics.
Text ZO.Create (Otf, Text 10 .00T VILE, "Tr TEST");
-- T~e file, TV Test, contains statistics.
TY.Brief(Otf,1D63,Tallied Var Tf);

-Report prints the followng information to the
-- user's monitor:
X- :2.000 Mean: 1.000 Std: 0.816 Var: 0.667

-- Obs: 3 Sum:3.000 Min:0.000 Vax:2.000
TV .Report (Tallied var TV);
EV.Clock :- EV.Clock + 1.0;
TV.Assign (Tallied Var Tf, 3.0);
ZY.Clook :- ZV.Clock + 1.0;

continued

61

TI'.Brief(Otf,1D3,TalliedVar Tf);
-Report prints the followlig information to
-the user, a monitor:
-X:4.00 Nsan:2.000 Std: 1.414 Var: 2.000
-- Obs: 5 Sum:l0.000 Kin:0.000 Max:4.000

TY.Report (TalliedVarTf);
TY.Aaaign(TalliedVarTf,4.O);
T.Han(Tallied Var Tf,ResultTf,ErrorTf);
TI.Varianoe (Tallied Var Tf,Rault Tf,ErrorTf);
TV.Std Dev(TalliedVarTf,Rssult Tf,ErrorTf);
TI .Report (Tallied Var Tf);

-Do report to file. If an error occurs do not
-propagate it up.

Prop :- false;
TI .Repozt (Otf2, Tallied Var Tf, Prop);
TI.Reaet(TalliedVarTf-);

when TI TEST ->
TI .Mman (Tallied Var TI,Reault TI, Error TI,Prop);
TI.Vaziance (Tallied Var TI,ReaultTI,Error-Tl,Prop);
TI. Std Dew (Tallied Var TI, ReaultTI, Error TI, Prop);

-- The following informsation is printed to the user's
-monitor from report:
-- [no data]

TI.Report (Tallied Var-TI,Propi;

TI .Aaaign (Tallied Var Ti, 0);
TI.Aaaign(TalliedVarTi,1);
TI.Variance (Tallied Var Ti,ReaultTi,Error Ti);
TI.Aaaign(TalliedVar_Ti,2);
EV.Clock :- 3.0;

-- Test TI.Brief

Text IO.Create(Otf,TextIO.Out-Fi.. "TI Test");
TI.Brief(Otf,ID4,TalliodVarTI);

-The following informatiLon ia printed out
-- from Report:
X- : 2 Mean: 1.000 Std: 0.816 Var 0.667

-Obs: 3 Sum 3 Kin: 0 Max: 2
TI .Report (Tallied Var TI);

EV.Clock :- EV.Clock + 1.0;
TI.Assign(TalliodVarTi,3);
EV.Clock :- EV.Clock + 1.0;
TI.Brief (Otf,ID4, Tallied VarTI);

-The following information is printed out
-- from Report:
-X: 3 Man: 1.500 Std: 1.118 Var: 1.250
-Oba: 4 Sum: 6 Max: 3

TI. Report (TalliedVarTI);

TI.Asaign(Talliod Var Ti, 4);
TI.Mman(Tallied Va-r-fiRsult-Ti,rrorTi);
TI.Varianoe (Tallied Var Ti,RsaultTi,Error Ti);
TI. ltdDev (Tallied VarTi, ReaultTi, Error Ti);

-The following information is printed out
-- from Report:
-X: 4 Man: 2.000 Std: 1.414 Var: 2.000
-Ob.: 5 Sum: 10 Kin: 0 Max: 4

TI.Report (Tallied Var Ti);
-- Do report to f~le.-
Prop :- false;

g- ame information as above is written to
-- file teat output.

continued

62

TI.Report (Otf2, Tallied Var Ti,Prop);
-Reset resets the statistics, as though no
-- values have been collected.

TI.Reset(TallidVarTi);
when AF TEST ->

Al Main(AcornVar Al, Result Ar, Error Ar, Prop);
Al .Variance (Accum -Var Al, ResultAl, Error Al, Prop);
AF. Std Dev (Accumk_VAzr_Al, ResultAV, ErrorAl, Prop);
-- Report prints to the users monitor: [no data]
Al .Report (Acorn Var-Al, Prop);

EV.Clock :- 1.0;

AI.Aaaign(Acoumt_Var_1.,0.0);
Ev.Clook :- Ev.Clock + 1.0;
Al.Assign(AccumVarA,l.0);
Al .Variance (AccuxVarAl, Result Af, ErrorAf);
EV.Clook :- Zv.Clock + 1.0;
AV.Assign(AccumVarA,2.0);

-- Teat Al Urief

Text_10. Create (Otf, Text-0 bout file, "Al Test");
Al.BRef(Otf, 1D2,Accum Var Al);

-Report print, the following to the user's
-- monitor:
X- :000 Mean: 0.500 Std: 0.500 Var: 0.250

-Su=: 1.000 Kin: 0.000 Max: 2.000
Al .Report (Acouzkvar _Al;

EV.Clock :- Ev.Clock + 1.0;
AF. Assign (Acoum _Var AF, 3. 0)
EV.Clock :- Xv.Clock + 1.0;
Al.Brief(Otf, 1D2,Accum Var Al);
Al .Report (Accum-varAl);

AF. Asa ign (Acaum _Va _A, 4. 0);
Al .Msan (Accum Var Al,Result Af, Error Af);
Al .Varianae (AccumVarAl, Result Af,zError Af);
Al. ltd Dev (Acorn VarAl, Result Af, Error Al);

-- Report writes out the following:
X- :3.00 Mean: 1.500 Std: 1.118 Var: 1.250

-Sum : 3.000 Kin: 0.000 Max 3.000
Al .Report (Acorn Var-Al);
Prop :- false;
Al.Report (Otf2,Accum Var _Af,Prop);
-- Do report to file.
Al Reset (Accum Var-Al);

when Al Teat ->
AX .ftan(Accum Var AX, Result AX, Error AX, Prop);
AZ .variance (Accum -Var-Ai, ResultAX, zrrorAX, Prop);
AZ. ltd Dev (Accum _VarAI, Result AX, Error AI, Prop);

-- Report prints out : [no data]
AX .Report (Acornk_Var_AX, Prop);

EV.Clock :- 1.0;
AX.Reset (Accum Var-AX);
AX. Assign (Accum kVar _AX, 0);
Kv.Clook :- Ev.Clock + 1.0;
AX.Assign (Accum -Var -AX, 1);
AX .Varianoe (Acorn Var AX, Result-AX, Error-A);
EV.Clock :- Xv.Clock + 1.0;
AX Assign (Accum Var AX, 2);

continued

63

-- Try Al Brief

Text IO. Create (Otf, TextIO. OutFile, "AlTet");
ZV.CLOCK :- EV.CLOCK + 1.0;
AX.Brief(Otf,ID,Acum Var Al);

-Report printsa out tae boling:
-x: 2 Mean 1.000 Std: 0.816 Var: 0.667
-Sum: 1.000 Kin: 0 Max: 2

Al .Rport (Acoum _var _Al) ;

ZV.Clock :- Xv.Clock + 1.0;
Al Assign (Acoun VarAl, 3);
EV.Clock :- Zv.CElock + 1.0;
AZ.Srief(Otf,ID,Accum Var-Al);

-Report prints out the following:
-x: 3 Mean: 1.600 Std: 1.020 Var: 1.040
-Sun: 5.000 Kin: 0 Max: 3

Al.Report (Accum-varAl);
Al. Assign (AccumkVar _AI, 4);
AZ Mean (Accum Var AI, ResultAl, ErrorAl);
Al .Variance (Accum Var-Al, ResultAl, ErrorAl);
Al. Std Dey (Accum Var-Al, Result_Al, ErrorAl);

-Al.Report (AccumVarAl);
-- Do report to file.

Prop :- false;
Al.Report(Otf2,AccumVarAI,Prop);
AX.Reset(AccuaVarAl);

end case;
end Stat Example;

64

7.0 HASH TABLES

Evada Contains two hash table packages. Hash tables provide a capability for quickly
inserting, accessing, and deleting numbers in an array. The use of hash tables is appropriate when
(1) these numbers have a wide range of values, and (2) there are relatively few numbers. A detailed
explanation of hash tables is found in a book by Tennenbaumn and Augenstein.* In an EARS

* simulation, hash tables may be used, for example, in duplicate message detection.

7.1 PACKAGE Hsh

Package Hsh, whose specification is given below, contains subprograms for creating,
accessing, and deleting hash tables. The comments within the specification explain what these
subprograms do.

with Nat Lnk, Unchecked Dealbocat ion;

us* Nat Lnk;-

package Bab is

UndefHMinLoot Passed End Of Table, Corrupted BachTable
:exceptEion;

RedundantInclusion
:exception;

type TABLE is
private;

-- it create& a table whose size is the smallest
-prime number greater than Size.

function Init
Site :POSITIVE
return TABLE;

-Include inserts the value Nat into table at.
procedure include

Rt TASLE;
Nat NATORhL)

-Included tells whether or not Nat is a member
-- of table 9t.

function included
IUt TARLE;
Nat NATURAL
return BOOLRAN;

-- Members returns the number of members in table
H- t.

function Members
Ut :TABL1E
return NATURAL;

-Remo"e remves a member Nat from table Rt.
* procedure Remove

Ht TABLE;
Nat NAZURAL;
Found :in out SWUMA)

continued

*Tennenbaulr. A. and M. Augenstein. 1981. Data Structures Using Pascal. Prentice-Hall,
Englewood Cliffs, NJ.

65

Traverse returns the first member of the
-- table Ht in Nat. Wben the table has
-- no members then Found is false.
procedure Traverse

St TABLE;
Nat in out NATURAL;
Found : in out BOOLEAN);

-- Next may only be called after Traverse Next,
-- or delete. For non-empty tables returns
-- ember Nat. For empty tables returns Found
-- set to false.
procedure Next

Bt TABLE;
Nat in out NATURAL;
Found : in out BOOLEAN);

-- Delete may only be called after Traverse Next,
-- or delete. For non-empty tables returns
-- member Nat and deletes it Wrom table Rt.
procedure Delete

(Bt TABLE;
Nat in out NATURAL;
Found : in out BOOLEAN);

-- Dump removes all members from the table.
procedure Dump

Bt : in out TABLE);

-- Destroy removes all members from the
-- table and deallocates the memory.
procedure Destroy

St : in out TABLE);

-- Package Sort sorts the table into a
-- linked list according to the criteria
-- defined in the user specified function.
generic

with function ">
(M1, M2 : NATURAL)

return BOOLEAN;
package Sort is

type NATURAL_STRUCTURE is
array (NAMURAL range <>)

of NATURAL;

type NATURAL ARRAY is
access NATURAL-STRUCTURE;

-- Produce produces a sorted array of elements.
function Produce

(t : TABLE)
return NATURAL-ARRAY;

-- Free deallocates memory used by array.
procedure Free is

new Unchecked Deallocation
(NATURALSTRUCTURE,

NATURAL ARRAY)

end Sort;

-- Private portion of specification deleted in
-- this documentation

end ash;

66

7.2 PACKAGE Hash

Package Hash, whose specification appears below, provides capabilities that are similar to
those provided by Hsh. Package Hash is a generic package that is instantiated with the type REC,
its access type, MEMBER, and two user-provided functions. The first function, Same, compares
two members, while the second, Key, calculates a unique integer key for a member.

The package specification for Hash, with comments describing what the subprograms do,
is given below.

with Unchecked Deallocation, Link;

generic

type RC is
private;

type 3MMBR is
access RC;

-The user writes a function Sam that compares two
-- members and returns true when they match.

with function Same
Nl,NM2 :31MEMBER
return SWIM"N;

-The user writes a function that returns an integer
-key that is unique to the member.
-The key is used by the Hash subprograms to access
-the member.
- An explanation of the use of keys is found in
-data structures texts, such as, "Data Structures
go Uing Pascal",* by Tenenbaum end Augenstein.

with function Key
(Ir : MEMBE
return INTGE;

package Hash is

Undef Nem Loa, Passed RmdOfTable, Corrupted Hash Table
:exceptEion;

Redundant Inclus ion
:exception;

package Lnk is
new Link IRZC, MEMBER);

use Lnk;

type TABLE is
private;

-- it creates a table whose Size is the smallest
-prim number greater than size.

function Init
(Size :NATURAL
return TABLE;

-Include inserts the value Nat into table Ht.
procedure Include

continued

67

Ht TAMAE;
Mb I MEMBE

-Included tells whether or not Nat is a member
-- of table St.

function Included
H t TABLS;
Hbr NI3ER
return BOOLEAN;

Nu Mmbers returns the number of members in table
-- t.

function Members
Bt :TABLE)
return NRTUPAL;

-Find searches the list to find a list member
-such that Same(Match,Wbr) is true.

procedure Find
Ut :TABLE;
Match : MMBER;
Hbr :out MEMBER;
Found :in out BOOLEAN)

-Remove removes a member Nat from table Ht.
procedure Remove

Ut :TABLE;
Match NUMMBER;
Mbr :out NHMR
Found :in out BOOLEAN;

-Traverse returns the first member of the
-table Ht in Mbr. When the table has no
-- members, then Found is false.

procedure Traverse
Ut TABLE;
Mbr in out MEMBER;
Found :in out BOOLEAN)

-- Next may only be called after Traverse, Next
-or delete. For non-empty tables it returns
-- member Nat. For empty tables it returns Found
-- set to false.

procedure Next
Bt TABLE;
Mbr in out MEMBER;
Found :in out BOOLEAN)

-- Delete may only be called after Traverse,
-- Next, or Delete. For non-empty tables it
-returns member Mbr and deletes it from
-table Ut.

procedure Delete
St TABLE;

M in out MEMBER;
Found :in out BOOLEAeN

-- Dump removes all members from the table.
procedure Dump

Ht ,in out TABLE)

-- Destroy removes all memibers from the

continued

68

-- table and deallocates the meaory.
procedure Destroy

Ht : in out TABLE);

generic
with function "

(Ml, M2 : MI)
return BOOLZAN;

-- Produce produces a sorted array of
-- elements.
package Sort is

type 0U STRUCTUIR is
array (NATURAL range <>)

of 3MIZR;

type NEMD ARRAY is
access INTa3. STRuCTuR;

-- Produce produces a sorted array of elements.
function Produce

(Bt : TABL)
return HIMARRAY;

-- Free deallocates memory used by array.
procedure Free is

now Unchecked Deallocation
(3OCURSTR0C-U, ZMBARRAY);

end Sort;

private -- Hash

type Let is
access List;

type VAR is
record

Chained : BOOLEAN := False;
Chain : Lst : null;
Hbr : MM :M null;

end record;

type HUH ARRAY is
array (N-ATURRL range <>)

of VAR;

type CTRL_RKC is
record

Current NATURAL : 0;
Inlist :BOOLAN : False;
lot : BOOLEAN : TRUK;

end record;

type TABLEARRAY
(Size NATURAL) is
record

Store : HASH ARRAY (0 .. Size);
Ctrl : CTRL REC;
Members : NURAL :- 0;

end record;

type TABLE is
access TABLEARRAY;

end Hash;

69

8.0 BIBLIOGRAPHY

Booch, G. 1987. Software Engineering with Ada. Benjamin/Cummings Publishing Company, Menlo
Park, CA.

Russell, E. 1983. Building Simulation Models. C.A.C.I., Inc., Los Angeles, CA.

Graybeal, W., and U. Pooch. 1980. Simulation Principles and Methods. Winthrop Publishers,
Cambridge, MA.

70

PublIc WepnIng burden for Oft collectun Of I10omiallOn IS Odmated to aego 1 hour per responseb*f Inldo Urnl~e for reVeWAIn astrucion searchn sdsng data souceaW gadeIng mid
maislnnfliedaneede. an4 conpkelri andl revWAe ghcollection of Irnornson, SendI owumment regarIngf t~ burden esatmale hermotwapect ofths colleclon of Informnation. Incluing
augeullonsfor reduckng t buden. Io Wasilkngon Headquflers Servioes Dlreclormigforinlffnaffion Operations aMd Reports. l2lS5effeaon Davis Higway, Suks 1204. Aro~gon. VA 22024302
w4d lte OPWce ofraagmn and Bug avRe Pduc rojec (700-0188) WasnIgon DC 20503.

1. AGENCY USE ONLY 1155w b"0 2. REPORT DATE 3 REPOT TYPE AMD DAME COVERED

IDecember 1990 November 1989 - July 1990

4. TITLE AND SUBTITLE 6. FUNDING NUMBERS

USER'S GUIDE TO AN EVENT-ACTIVATION RECORD APPROACH TO PE: 0602232N
SIMULATION MODELING IN ADA PROJ: RC32A13

S. AUTHoR(S) WU: DN309082
H. Mumm and R. Ollerton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 NOSC TD 1944

GLPNORNdONTRN AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGJUONITORING
AGENCY REPORT NUMBER

Naval Ocean Systems Center
Block Programs
San Diego, CA 92152-5000
11. SUPPLEMENTARY NOTES

12a. OISTRIBTIONJAVAI.ABILI STATEMENT 12b. DISTRIBUTION CCDE

Approved for public release; distribution is unlimited.

13. ABSTRACT fWwieiai 200 words)

This document explains how to install and use the Event-Activation Record Approach to Simulation Modeling in
Ada (EARS) simulation libraries, Version 1.0, that were developed by the Naval Ocean Systems Center, Code 854. This
software was designed to compile and execute using the Vax Ada compiler. EARS is a discrete-event simulation system that
uses an event-activation record approach. It has capabilities similar to those provided by SIMSCRIPT. All simulations that
can be modeled in SIMSCRIPT can be modeled using EARS.

From a set of user-defined event types, EARS automatically generates much of the source code for many Ada
packages and subprograms that are needed for simulation development. This allows a user to quickly start writing an EARS
simulation. The user tailors the simulation to a particular application by adding Ada source code to the generated program
units and by writing additional ones.

This document contains an actual simulation example using EARS. T"he document also includes the Ada source
code for linked list packages, statistical packages, and hash table packages, as well as examples of how they are used.

14. SUBJECT TERM 1. NUMBER OF PAGES
EARS 77

Ada linked list___ _______

instantiation discrete-event simulation 10. PRICE CODE
elaboration hash tables
17. SECUITY CLSIIAIN16. SECURITY CLASSIFICATION 19. SECURITY CILASSIFICATIO 20. UIMITAION OF ABSTRACT

OF REOTOF TWi PAWE CF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540.1-2004M0 St bm om 2W6

INITIAL DISTRIBUTION

CODE 0012 Patent Counsel (1)
CODE 0144 R. November (1)
CODE 171 Dr. M. Vineberg (1)
CODE 40 Dr. R. C. Kolb (1)
CODE 41 A. Justice (1)
CODE 411 D. Hayward (1)
CODE 411 B. Ollerton (1)
CODE 411 H. Mumm (8)
CODE 85 R. Casey (1)
CODE 8503 Dr. C. Warner (1)
CODE 854 R. Merk (1)
CODE 854 Dr. N. Dave' (1)
CODE 921 J. Puleo (1)
CODE 961 Archive/Stock (6)
CODE 964 Library (3)

Defense Technical Information Center
Alexandria, VA 22304-6145 (4)

NOSC Liaison Office
Washington, DC 20363-5100 (1)

Center for Naval Analyses
Alexandria, VA 22302-0268 (1)

